Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (5): 53505   https://doi.org/10.1007/s11467-022-1163-4
  本期目录
Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics
Qi-Ping Su1, Yu Zhang2, Liang Bin1, Chui-Ping Yang1,3()
1. School of Physics, Hangzhou Normal University, Hangzhou 311121, China
2. School of Physics, Nanjing University, Nanjing 210093, China
3. Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China
 全文: PDF(2086 KB)  
Abstract

We propose an efficient scheme to implement a multiplex-controlled phase gate with multiple photonic qubits simultaneously controlling one target photonic qubit based on circuit quantum electrodynamics (QED). For convenience, we denote this multiqubit gate as MCP gate. The gate is realized by using a two-level coupler to couple multiple cavities. The coupler here is a superconducting qubit. This scheme is simple because the gate implementation requires only one step of operation. In addition, this scheme is quite general because the two logic states of each photonic qubit can be encoded with a vacuum state and an arbitrary non-vacuum state |φ> (e.g., a Fock state, a superposition of Fock states, a cat state, or a coherent state, etc.) which is orthogonal or quasi-orthogonal to the vacuum state. The scheme has some additional advantages: because only two levels of the coupler are used, i.e., no auxiliary levels are utilized, decoherence from higher energy levels of the coupler is avoided; the gate operation time does not depend on the number of qubits; and the gate is implemented deterministically because no measurement is applied. As an example, we numerically analyze the circuit-QED based experimental feasibility of implementing a three-qubit MCP gate with photonic qubits each encoded via a vacuum state and a cat state. The scheme can be applied to accomplish the same task in a wide range of physical system, which consists of multiple microwave or optical cavities coupled to a two-level coupler such as a natural or artificial atom.

Key wordsmultiplex controlled    phase gate    circuit QED
收稿日期: 2022-01-14      出版日期: 2022-05-06
Corresponding Author(s): Chui-Ping Yang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(5): 53505.
Qi-Ping Su, Yu Zhang, Liang Bin, Chui-Ping Yang. Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys. , 2022, 17(5): 53505.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1163-4
https://academic.hep.com.cn/fop/CN/Y2022/V17/I5/53505
1 P. W. Shor , in: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser, IEEE Computer Society, Los Alamitos, CA, 1994, page 124
2 L. K. Grover , Quantum computers can search rapidly by using almost any transformation, Phys. Rev. Lett. 80 (19), 4329 (1998)
https://doi.org/10.1103/PhysRevLett.80.4329
3 T. Beth and M. Röteler , in: Quantum Information, Springer, Berlin, 2001 Vol. 173, Chap. 4, p. 96
4 P. W. Shor , Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52 (4), R2493 (1995)
https://doi.org/10.1103/PhysRevA.52.R2493
5 A. M. Steane , Error correcting codes in quantum theory, Phys. Rev. Lett. 77 (5), 793 (1996)
https://doi.org/10.1103/PhysRevLett.77.793
6 F. Gaitan , in: Quantum Error Correction and Fault Tolerant Quantum Computing, CRC Press, Boca Raton, FL, 2008, pp 1 312
7 S. L. Braunstein , V. Bužek , and M. Hillery , Quantum information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit, Phys. Rev. A 63 (5), 052313 (2001)
https://doi.org/10.1103/PhysRevA.63.052313
8 M. Šašura and V. Bužek , Multiparticle entanglement with quantum logic networks: Application to cold trapped ions, Phys. Rev. A 64 (1), 012305 (2001)
https://doi.org/10.1103/PhysRevA.64.012305
9 A. Barenco , C. H. Bennett , R. Cleve , D. P. DiVincenzo , N. Margolus , P. Shor , T. Sleator , J. A. Smolin , and H. Weinfurter , Elementary gates for quantum computation, Phys. Rev. A 52 (5), 3457 (1995)
https://doi.org/10.1103/PhysRevA.52.3457
10 N. Khaneja and S. J. Glaser , Cartan decomposition of SU(2n) and control of spin systems, Chem. Phys. 267 (1-3), 11 (2001)
https://doi.org/10.1016/S0301-0104(01)00318-4
11 M. Möttönen , J. J. Vartiainen , V. Bergholm , and M. M. Salomaa , Quantum circuits for general multiqubit gates, Phys. Rev. Lett. 93 (13), 130502 (2004)
https://doi.org/10.1103/PhysRevLett.93.130502
12 Y. Liu , G. L. Long , and Y. Sun , Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates, Int. J. Quant. Inf. 6 (3), 447 (2008)
https://doi.org/10.1142/S0219749908003621
13 M. A. Nielsen and I. L. Chuang , Quantum Computation and Quantum Information, Cambridge University Press, Cam bridge, England, 2001
14 X. Wang , A. Sørensen , and K. Mølmer , Multibit gates for quantum computing, Phys. Rev. Lett. 86 (17), 3907 (2001)
https://doi.org/10.1103/PhysRevLett.86.3907
15 T. Monz , K. Kim , W. Hänsel , M. Riebe , A. S. Villar , P. Schindler , M. Chwalla , M. Hennrich , and R. Blatt , Realization of the quantum Toffoli gate with trapped ions, Phys. Rev. Lett. 102 (4), 040501 (2009)
https://doi.org/10.1103/PhysRevLett.102.040501
16 P. Z. Zhao , G. F. Xu , and D. M. Tong , Nonadiabatic holonomic multiqubit controlled gates, Phys. Rev. A 99 (5), 052309 (2019)
https://doi.org/10.1103/PhysRevA.99.052309
17 H. R. Wei and F. G. Deng , Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities, Phys. Rev. A 87 (2), 022305 (2013)
https://doi.org/10.1103/PhysRevA.87.022305
18 L. M. Duan , B. Wang , and H. J. Kimble , Robust quantum gates on neutral atoms with cavity-assisted photonscattering, Phys. Rev. A 72 (3), 032333 (2005)
https://doi.org/10.1103/PhysRevA.72.032333
19 X. Zou , Y. Dong , and G. C. Guo , Implementing a conditional z gate by a combination of resonant interaction and quantum interference, Phys. Rev. A 74 (3), 032325 (2006)
https://doi.org/10.1103/PhysRevA.74.032325
20 M. Waseem , M. Irfan , and S. Qamar , Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity, Quantum Inform. Process. 14 (6), 1869 (2015)
https://doi.org/10.1007/s11128-015-0947-7
21 Y. Liang , Q. C. Wu , S. L. Su , X. Ji , and S. Zhang , Shortcuts to adiabatic passage for multiqubit controlled-phase gate, Phys. Rev. A 91 (3), 032304 (2015)
https://doi.org/10.1103/PhysRevA.91.032304
22 S. L. Su , H. Z. Shen , E. Liang , and S. Zhang , One-step construction of the multiple-qubit Rydberg controlled-PHASE gate, Phys. Rev. A 98 (3), 032306 (2018)
https://doi.org/10.1103/PhysRevA.98.032306
23 Y. Hao , G. Lin , Y. Niu , and S. Gong , One-step implementation of a multiqubit controlled phase-flip gate in coupled cavities, Quantum Inform. Process. 18 (1), 18 (2019)
https://doi.org/10.1007/s11128-018-2128-y
24 T. H. Xing , X. Wu , and G. F. Xu , Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation, Phys. Rev. A 101 (1), 012306 (2020)
https://doi.org/10.1103/PhysRevA.101.012306
25 M. Khazali and K. Mølmer , Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits, Phys. Rev. X 10 (2), 021054 (2020)
https://doi.org/10.1103/PhysRevX.10.021054
26 W. L. Yang , Z. Q. Yin , Z. Y. Xu , M. Feng , and J. F. Du , One step implementation of multi-qubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity, Appl. Phys. Lett. 96 (24), 241113 (2010)
https://doi.org/10.1063/1.3455891
27 T. Wang and Y. Zhang , Scalable multi-qubit quantum gates in quantum networks based on the microtoroidalresonator mediated nitrogen-vacancy centers in diamond, J. Opt. Soc. Am. B 37 (5), 1372 (2020)
https://doi.org/10.1364/JOSAB.387055
28 C. P. Yang and S. Han , n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator, Phys. Rev. A 72 (3), 032311 (2005)
https://doi.org/10.1103/PhysRevA.72.032311
29 C. P. Yang and S. Han , Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED, Phys. Rev. A 73 (3), 032317 (2006)
https://doi.org/10.1103/PhysRevA.73.032317
30 W. A. Li and Y. Chen , Simplified proposal for realizing a multiqubit tunable phase gate in circuit QED, J. Opt. Soc. Am. B 34 (7), 1560 (2017)
https://doi.org/10.1364/JOSAB.34.001560
31 B. Ye , Z. F. Zheng , and C. P. Yang , Multiplex-controlled phase gate with qubits distributed in a multicavity system, Phys. Rev. A 97 (6), 062336 (2018)
https://doi.org/10.1103/PhysRevA.97.062336
32 J. Zhang , W. Liu , Z. Deng , Z. Lu , and G. L. Long , Modularization of a multi-qubit controlled phase gate and its nuclear magnetic resonance implementation, J. Opt. B 7 (1), 22 (2005)
https://doi.org/10.1088/1464-4266/7/1/005
33 A. Fedorov , L. Steffen , M. Baur , M. P. da Silva , and A. Wallraff , Implementation of a Toffoli gate with superconducting circuits, Nature 481 (7380), 170 (2012)
https://doi.org/10.1038/nature10713
34 C. Song , S. B. Zheng , P. Zhang , K. Xu , L. Zhang , Q. Guo , W. Liu , D. Xu , H. Deng , K. Huang , D. Zheng , X. Zhu , and H. Wang , Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit, Nat. Commun. 8 (1), 1061 (2017)
https://doi.org/10.1038/s41467-017-01156-5
35 H. Levine , A. Keesling , G. Semeghini , A. Omran , T. T. Wang , S. Ebadi , H. Bernien , M. Greiner , V. Vuletić , H. Pichler , and M. D. Lukin , Parallel implementation of highfidelity multiqubit gates with neutral atoms, Phys. Rev. Lett. 123 (17), 170503 (2019)
https://doi.org/10.1103/PhysRevLett.123.170503
36 J. Fiurášek , Linear-optics quantum Toffoli and Fredkin gates, Phys. Rev. A 73 (6), 062313 (2006)
https://doi.org/10.1103/PhysRevA.73.062313
37 T. C. Ralph , K. J. Resch , and A. Gilchrist , Effcient Toffoli gates using qudits, Phys. Rev. A 75 (2), 022313 (2007)
https://doi.org/10.1103/PhysRevA.75.022313
38 H. L. Huang , W. S. Bao , T. Li , F. G. Li , X. Q. Fu , S. Zhang , H. L. Zhang , and X. Wang , Deterministic linear optical quantum Toffoli gate, Phys. Lett. A 381 (33), 2673 (2017)
https://doi.org/10.1016/j.physleta.2017.06.034
39 L. Dong , S. L. Wang , C. Cui , X. Geng , Q. Y. Li , H. K. Dong , X. M. Xiu , and Y. J. Gao , Polarization Toffoli gate assisted by multiple degrees of freedom, Opt. Lett. 43 (19), 4635 (2018)
https://doi.org/10.1364/OL.43.004635
40 X. Zou , K. Li , and G. Guo , Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate, Phys. Rev. A 74 (4), 044305 (2006)
https://doi.org/10.1103/PhysRevA.74.044305
41 H. R. Wei and G. L. Long , Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators, Phys. Rev. A 91 (3), 032324 (2015)
https://doi.org/10.1103/PhysRevA.91.032324
42 H. R. Wei , F. G. Deng , and G. L. Long , Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities, Opt. Express 24 (16), 18619 (2016)
https://doi.org/10.1364/OE.24.018619
43 B. Y. Xia , C. Cao , Y. H. Han , and R. Zhang , Universal photonic three-qubit quantum gates with two degrees of freedom assisted by charged quantum dots inside singlesided optical microcavities, Laser Phys. 28 (9), 095201 (2018)
https://doi.org/10.1088/1555-6611/aac904
44 M. Mičuda , M. Sedlák , I. Straka , M. Miková , M. Dušek , M. Ježek , and J. Fiurášek , Effcient experimental estimation of fidelity of linear optical quantum Toffoli gate, Phys. Rev. Lett. 111 (16), 160407 (2013)
https://doi.org/10.1103/PhysRevLett.111.160407
45 S. Ru , Y. Wang , M. An , F. Wang , P. Zhang , and F. Li , Realization of deterministic quantum Toffoli gate with a single photon, Phys. Rev. A 103 (2), 022606 (2021)
https://doi.org/10.1103/PhysRevA.103.022606
46 P. M. Lu , J. Song , and Y. Xia , Implementing a multi-qubit quantum phase gate encoded by photonic qubit, Chin. Phys. Lett. 27 (3), 030302 (2010)
https://doi.org/10.1088/0256-307X/27/3/030302
47 M. Hua , M. J. Tao , and F. G. Deng , Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics, Phys. Rev. A 90 (1), 012328 (2014)
https://doi.org/10.1103/PhysRevA.90.012328
48 M. Hua , M. J. Tao , and F. G. Deng , Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED, Sci. Rep. 5 (1), 9274 (2015)
https://doi.org/10.1038/srep09274
49 J. X. Han , J. L. Wu , Y. Wang , Y. Y. Jiang , Y. Xian , and J. Song , Multi-qubit phase gate on multiple resonators mediated by a superconducting bus, Opt. Express 28 (2), 1954 (2020)
https://doi.org/10.1364/OE.384352
50 C. P. Yang , S. I. Chu , and S. Han , Possible realization of entanglement, logical gates and quantum information transfer with superconducting-quantum-interferencedevice qubits in cavity QED, Phys. Rev. A 67 (4), 042311 (2003)
https://doi.org/10.1103/PhysRevA.67.042311
51 J. Q. You and F. Nori , Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68 (6), 064509 (2003)
https://doi.org/10.1103/PhysRevB.68.064509
52 A. Blais , R. S. Huang , A. Wallraff , S. M. Girvin , and R. J. Schoelkopf , Cavity quantum electrodynamics for superconduct ing electrical circuits: An architecture for quantum computation, Phys. Rev. A 69 (6), 062320 (2004)
https://doi.org/10.1103/PhysRevA.69.062320
53 J. Q. You and F. Nori , Superconducting circuits and quantum information, Phys. Today 58 (11), 42 (2005)
https://doi.org/10.1063/1.2155757
54 J. Q. You and F. Nori , Atomic physics and quantum optics using superconducting circuits, Nature 474 (7353), 589 (2011)
https://doi.org/10.1038/nature10122
55 I. Buluta , S. Ashhab , and F. Nori , Natural and artificial atoms for quantum computation, Rep. Prog. Phys. 74 (10), 104401 (2011)
https://doi.org/10.1088/0034-4885/74/10/104401
56 Z. L. Xiang , S. Ashhab , J. Q. You , and F. Nori , Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85 (2), 623 (2013)
https://doi.org/10.1103/RevModPhys.85.623
57 X. Gu , A. F. Kockum , A. Miranowicz , Y. X. Liu , and F. Nori , Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.10.002
58 Q. P. Su , H. Zhang , and C. P. Yang , Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED, Front. Phys. 16 (6), 61501 (2021)
https://doi.org/10.1007/s11467-021-1098-1
59 M. H. Devoret and R. J. Schoelkopf , Superconducting circuits for quantum information: An outlook, Science 339 (6124), 1169 (2013)
https://doi.org/10.1126/science.1231930
60 C. H. Bai , D. Y. Wang , S. Hu , W. X. Cui , X. X. Jiang , and H. F. Wang , Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system, Quantum Inform. Process. 15 (4), 1485 (2016)
https://doi.org/10.1007/s11128-015-1197-4
61 B. Ye , Z. F. Zheng , Y. Zhang , and C. P. Yang , QED circuit single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n–1 microwave photonic qubits, Opt. Express 26 (23), 30689 (2018)
https://doi.org/10.1364/OE.26.030689
62 C. P. Yang , Y. X. Liu , and F. Nori , Phase gate of one qubit simultaneously controlling n qubits in a cavity, Phys. Rev. A 81 (6), 062323 (2010)
https://doi.org/10.1103/PhysRevA.81.062323
63 C. P. Yang , S. B. Zheng , and F. Nori , Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity, Phys. Rev. A 82 (6), 062326 (2010)
https://doi.org/10.1103/PhysRevA.82.062326
64 M. Waseem , M. Irfan , and S. Qamar , Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator, Physica C 477, 24 (2012)
https://doi.org/10.1016/j.physc.2012.02.024
65 C. P. Yang , Q. P. Su , F. Y. Zhang , and S. B. Zheng , Single-step implementation of a multipletarget-qubit controlled phase gate without need of classical pulses, Opt. Lett. 39 (11), 3312 (2014)
https://doi.org/10.1364/OL.39.003312
66 H. F. Wang , A. D. Zhu , and S. Zhang , One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities, Opt. Lett. 39 (6), 1489 (2014)
https://doi.org/10.1364/OL.39.001489
67 T. Liu , X. Z. Cao , Q. P. Su , S. J. Xiong , and C. P. Yang , Multi-target-qubit unconventional geometric phase gate in a multicavity system, Sci. Rep. 6 (1), 21562 (2016)
https://doi.org/10.1038/srep21562
68 Y. J. Fan , Z. F. Zheng , Y. Zhang , D. M. Lu , and C. P. Yang , One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14 (2), 21602 (2019)
https://doi.org/10.1007/s11467-018-0875-y
69 P. J. Leek , S. Filipp , P. Maurer , M. Baur , R. Bianchetti , J. M. Fink , M. Göppl , L. Steffen , and A. Wallraff , Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B 79 (18), 180511 (2009)
https://doi.org/10.1103/PhysRevB.79.180511
70 R. Barends , J. Kelly , A. Megrant , D. Sank , E. Jeffrey , Y. Chen , Y. Yin , B. Chiaro , J. Mutus , C. Neill , P. O’Malley , P. Roushan , J. Wenner , T. C. White , A. N. Cleland , and J. M. Martinis , Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett. 111 (8), 080502 (2013)
https://doi.org/10.1103/PhysRevLett.111.080502
71 M. Neeley , M. Ansmann , R. C. Bialczak , M. Hofheinz , N. Katz , E. Lucero , A. O’Connell , H. Wang , A. N. Cleland , and J. M. Martinis , Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4 (7), 523 (2008)
https://doi.org/10.1038/nphys972
72 A. Sørensen and K. Mølmer , Quantum Computation with Ions in Thermal Motion, Phys. Rev. Lett. 82 (9), 1971 (1999)
https://doi.org/10.1103/PhysRevLett.82.1971
73 D. F. V. James and J. Jerke , Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85 (6), 625 (2007)
https://doi.org/10.1139/p07-060
74 Y. Xu , Y. Ma , W. Cai , X. Mu , W. Dai , W. Wang , L. Hu , X. Li , J. Han , H. Wang , Y. P. Song , Z. B. Yang , S. B. Zheng , and L. Sun , Demonstration of controlled-phase gates between two error-correctable photonic qubits, Phys. Rev. Lett. 124 (12), 120501 (2020)
https://doi.org/10.1103/PhysRevLett.124.120501
75 M. Sandberg , C. M. Wilson , F. Persson , T. Bauch , G. Johansson , V. Shumeiko , T. Duty , and P. Delsing , Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92 (20), 203501 (2008)
https://doi.org/10.1063/1.2929367
76 Z. L. Wang , Y. P. Zhong , L. J. He , H. Wang , J. M. Martinis , A. N. Cleland , and Q. W. Xie , Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102 (16), 163503 (2013)
https://doi.org/10.1063/1.4802893
77 Z. Leghtas , G. Kirchmair , B. Vlastakis , R. J. Schoelkopf , M. H. Devoret , and M. Mirrahimi , Hardware-effcient autonomous quantum memory protection, Phys. Rev. Lett. 111 (12), 120501 (2013)
https://doi.org/10.1103/PhysRevLett.111.120501
78 M. Mirrahimi , Z. Leghtas , V. V. Albert , S. Touzard , R. J. Schoelkopf , L. Jiang , and M. H. Devoret , Dynamically protected cat-qubits: A new paradigm for universal quantum computation, New J. Phys. 16 (4), 045014 (2014)
https://doi.org/10.1088/1367-2630/16/4/045014
79 J. Guillaud and M. Mirrahimi , Repetition cat qubits for fault-tolerant quantum computation, Phys. Rev. X 9 (4), 041053 (2019)
https://doi.org/10.1103/PhysRevX.9.041053
80 C. Chamberland , K. Noh , P. Arrangoiz-Arriola , E. T. Campbell , C. T. Hann , J. Iverson , H. Putterman , T. C. Bohdanowicz , S. T. Flammia , A. Keller , et al. , Building a fault-tolerant quantum computer using concatenated cat codes, PRX Quantum 3, 010329 (2022)
https://doi.org/10.1103/PRXQuantum.3.010329
81 T. Liu , Z. F. Zheng , Y. Zhang , Y. L. Fang , and C. P. Yang , Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15 (2), 21603 (2020)
https://doi.org/10.1007/s11467-019-0949-5
82 A. O. Niskanen , K. Harrabi , F. Yoshihara , Y. Nakamura , S. Lloyd , and J. S. Tsai , Quantum coherent tunable coupling of superconducting qubits, Science 316 (5825), 723 (2007)
https://doi.org/10.1126/science.1141324
83 K. Inomata , T. Yamamoto , P. M. Billangeon , Y. Nakamura , and J. S. Tsai , Large dispersive shift of cavity resonance induced by a superconducting flux qubit in the straddling regime, Phys. Rev. B 86 (14), 140508 (2012)
https://doi.org/10.1103/PhysRevB.86.140508
84 Z. H. Peng , Y. X. Liu , J. T. Peltonen , T. Yamamoto , J. S. Tsai , and O. Astafiev , Correlated emission lasing in harmonic oscillators coupled via a single three-level artificial atom, Phys. Rev. Lett. 115 (22), 223603 (2015)
https://doi.org/10.1103/PhysRevLett.115.223603
85 Y. X. Liu , J. Q. You , L. F. Wei , C. P. Sun , and F. Nori , Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95 (8), 087001 (2005)
https://doi.org/10.1103/PhysRevLett.95.087001
86 T. Niemczyk , F. Deppe , H. Huebl , E. P. Menzel , F. Hocke , M. J. Schwarz , J. J. Garcia-Ripoll , D. Zueco , T. Hümmer , E. Solano , A. Marx , and R. Gross , Circuit quantum electrodynamics in the ultrastrong coupling regime, Nat. Phys. 6 (10), 772 (2010)
https://doi.org/10.1038/nphys1730
87 F. Yan , S. Gustavsson , A. Kamal , J. Birenbaum , A. P. Sears , D. Hover , T. J. Gudmundsen , D. Rosenberg , G. Samach , S. Weber , J. L. Yoder , T. P. Orlando , J. Clarke , A. J. Kerman , and W. D. Oliver , The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7 (1), 12964 (2016)
https://doi.org/10.1038/ncomms12964
88 J. Q. You , X. Hu , S. Ashhab , and F. Nori , Lowdecoherence flux qubit, Phys. Rev. B 75 (14), 140515 (2007)
https://doi.org/10.1103/PhysRevB.75.140515
89 C. P. Yang , Q. P. Su , and S. Han , Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86 (2), 022329 (2012)
https://doi.org/10.1103/PhysRevA.86.022329
90 G. Calusine , A. Melville , W. Woods , R. Das , C. Stull , V. Bolkhovsky , D. Braje , D. Hover , D. K. Kim , X. Miloshi , D. Rosenberg , A. Sevi , J. L. Yoder , E. Dauler , and W. D. Oliver , Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators, Appl. Phys. Lett. 112 (6), 062601 (2018)
https://doi.org/10.1063/1.5006888
91 W. Woods , G. Calusine , A. Melville , A. Sevi , E. Golden , D. K. Kim , D. Rosenberg , J. L. Yoder , and W. D. Oliver , Determining interface dielectric losses in superconducting coplanar waveguide resonators, Phys. Rev. Appl. 12 (1), 014012 (2019)
https://doi.org/10.1103/PhysRevApplied.12.014012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed