Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (4): 43504   https://doi.org/10.1007/s11467-022-1175-0
  本期目录
Ferroelectricity in hBN intercalated double-layer graphene
Yibo Wang1(), Siqi Jiang1, Jingkuan Xiao1, Xiaofan Cai1, Di Zhang1, Ping Wang1, Guodong Ma1, Yaqing Han1, Jiabei Huang1, Kenji Watanabe2, Takashi Taniguchi2, Yanfeng Guo4, Lei Wang1,3, Alexander S. Mayorov1(), Geliang Yu1,3()
1. National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
2. National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
3. Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing 210093, China
4. School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
 全文: PDF(2904 KB)   HTML
Abstract

Van der Waals (vdW) assembly of two-dimensional materials has long been recognized as a powerful tool for creating unique systems with properties that cannot be found in natural compounds [Nature 499, 419 (2013)]. However, among the variety of vdW heterostructures and their various properties, only a few have revealed metallic and ferroelectric behaviour signatures [Sci. Adv. 5, eaax5080 (2019); Nature560, 336 (2018)]. Here we show ferroelectric semimetal made of double-gated double-layer graphene separated by an atomically thin crystal of hexagonal boron nitride. The structure demonstrates high room temperature mobility of the order of 10 m2·V−1·s−1 and exhibits ambipolar switching in response to the external electric field. The observed hysteresis is reversible and persists above room temperature. Our fabrication method expands the family of ferroelectric vdW compounds and offers a promising route for developing novel phase-changing devices. A possible microscopic model of ferroelectricity is discussed.

Key wordsdouble-layer graphene    ferroelectric metal    intercalation    dry transfer    high-mobility
收稿日期: 2022-01-11      出版日期: 2022-06-17
Corresponding Author(s): Yibo Wang,Alexander S. Mayorov,Geliang Yu   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(4): 43504.
Yibo Wang, Siqi Jiang, Jingkuan Xiao, Xiaofan Cai, Di Zhang, Ping Wang, Guodong Ma, Yaqing Han, Jiabei Huang, Kenji Watanabe, Takashi Taniguchi, Yanfeng Guo, Lei Wang, Alexander S. Mayorov, Geliang Yu. Ferroelectricity in hBN intercalated double-layer graphene. Front. Phys. , 2022, 17(4): 43504.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1175-0
https://academic.hep.com.cn/fop/CN/Y2022/V17/I4/43504
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 K. Geim A. , V. Grigorieva I. . Van der Waals heterostructures. Nature, 2013, 499 : 419
https://doi.org/10.1038/nature12385
2 Sharma P. X. Xiang F. F. Shao D. Zhang D. Y. Tsymbal E. R. Hamilton A. Seidel J., A room-temperature ferroelectric semimetal, Sci. Adv. 5, eaax5080 ( 2019)
3 Fei Z. , Zhao W. , A. Palomaki T. , Sun B. , K. Miller M. , Zhao Z. , Yan J. , Xu X. , H. Cobden D. . Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560 : 336
https://doi.org/10.1038/s41586-018-0336-3
4 Xi X. , Zhao L. , Wang Z. , Berger H. , Forró L. , Shan J. , F. Mak K. . Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotech., 2015, 10 : 765
https://doi.org/10.1038/nnano.2015.143
5 X. Zhou W. , Ariando A. . Review on ferroelectric/polar metals. Jpn. J. Appl. Phys., 2020, 59 : SI0802
https://doi.org/10.35848/1347-4065/ab8bbf
6 Cao Y. , Wang Z. , Y. Park S. , Yuan Y. , Liu X. , M. Nikitin S. , Akamatsu H. , Kareev M. , Middey S. , Meyers D. , Thompson P. , J. Ryan P. , Shafer P. , N’Diaye A. , Arenholz E. , Gopalan V. , Zhu Y. , M. Rabe K. , Chakhalian J. . Artificial two-dimensional polar metal at room temperature. Nat. Commun., 2018, 9 : 1547
https://doi.org/10.1038/s41467-018-03964-9
7 Shi Y. Guo Y. Wang X. J. Princep A. Khalyavin D. Manuel P. Michiue Y. Sato A. Tsuda K. Yu S. Arai M. Shirako Y. Akaogi M. Wang N. Yamaura K. T. Boothroyd A., A ferroelectric-like structural transition in a metal, Nat. Mater. 12, 1024 ( 2013)
8 Liu X. , Yang Y. , Hu T. , Zhao G. , Chen C. , Ren W. . Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2. Nanoscale, 2019, 11 : 18575
https://doi.org/10.1039/C9NR05404A
9 M. Si, A. K. Saha, S. Gao, G. Qiu, J. Qin, Y. Duan, J. Jian, C. Niu, H. Wang, W. Wu, S. K. Gupta, and P. D. Ye, A ferroelectric semiconductor field-effect transistor, Nat. Nanoelectron. 2, 580 (2019)
10 Wang L. , Mericp I. , Huang Y. , Gao Q. , Gao Y. , Tran H. , Taniguchi T. , Watanabe K. , M. Campos L. , A. Muller D. , Guo J. , Kim P. , Hone J. , L. Shepard K. , R. Dean C. . One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342 : 614
https://doi.org/10.1126/science.1244358
11 R. Dean C. , F. Young A. , Meric I. , Lee C. , Wang L. , Sorgenfrei S. , Watanabe K. , Taniguchi T. , Kim P. , L. Shepard K. , Hone J. . Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 2010, 5 : 722
https://doi.org/10.1038/nnano.2010.172
12 S. Mayorov A. , V. Gorbachev R. , V. Morozov S. , Britnell L. , Jalil R. , A. Ponomarenko L. , Blake P. , S. Novoselov K. , Watanabe K. , Taniguchi T. , K. Geim A. . Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett., 2011, 11 : 2396
https://doi.org/10.1021/nl200758b
13 H. Castro Neto A. , Guinea F. , M. R. Peres N. , S. Novoselov K. , K. Geim A. . The electronic properties of grapheme. Rev. Mod. Phys., 2009, 81 : 109
https://doi.org/10.1103/RevModPhys.81.109
14 Puggioni D. , Giovannetti G. , Capone M. , M. Rondinelli J. . Design of a Mott multiferroic from a nonmagnetic polar metal. Phys. Rev. Lett., 2015, 115 : 087202
https://doi.org/10.1103/PhysRevLett.115.087202
15 Zheng Z. , Ma Q. , Bi Z. , de la Barrera S. , H. Liu M. , Mao N. , Zhang Y. , Kiper N. , Watanabe K. , Taniguchi T. , Kong J. , A. Tisdale W. , Ashoori R. , Gedik N. , Fu L. , Y. Xu S. , Jarillo-Herrero P. . Unconventional ferroelectricity in moiré heterostructures. Nature, 2020, 588 : 71
https://doi.org/10.1038/s41586-020-2970-9
16 V. Kretinin A. , Cao Y. , S. Tu J. , L. Yu G. , Jalil R. , S. Novoselov K. , J. Haigh S. , Gholinia A. , Mishchenko A. , Lozada M. , Georgiou T. , R. Woods C. , Withers F. , Blake P. , Eda G. , Wirsig A. , Hucho C. , Watanabe K. , Taniguchi T. , K. Geim A. , V. Gorbachev R. . Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett., 2014, 14 : 3270
https://doi.org/10.1021/nl5006542
17 Lines M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford England, 1977
18 A. Ponomarenko L. , K. Geim A. , A. Zhukov A. , Jalil R. , V. Morozov S. , S. Novoselov K. , V. Grigorieva I. , H. Hill E. , V. Cheianov V. , I. Fal’ko V. , Watanabe K. , Taniguchi T. , V. Gorbachev R. . Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys., 2011, 7 : 958
https://doi.org/10.1038/nphys2114
19 Schmitz M. , Engels S. , Banszerus L. , Watanabe K. , Taniguchi T. , Stampfer C. , Beschoten B. . High mobility dry-transferred CVD bilayer grapheme. Appl. Phys. Lett., 2017, 110 : 263110
https://doi.org/10.1063/1.4990390
20 Wang Z. , B. Wang Y. , Yin J. , Tóvári E. , Yang Y. , Lin L. , Holwill M. , Birkbeck J. , J. Perello D. , Xu S. , Zultak J. , V. Gorbachev R. , V. Kretinin A. , Taniguchi T. , Watanabe K. , V. Morozov S. , Anđelković M. , P. Milovanović S. , Covaci L. , M. Peeters F. , Mishchenko A. , K. Geim A. , S. Novoselov K. , I. Fal’Ko V. , Knothe A. , R. Woods C. . Composite super-moiré lattices in double-aligned graphene heterostructures. Sci. Adv., 2019, 5 : eaay8897
https://doi.org/10.1126/sciadv.aay8897
21 K. Kumar R. , Chen X. , H. Auton G. , Mishchenko A. , A. Bandurin D. , V. Morozov S. , Cao Y. , Khestanova E. , B. Shalom M. , V. Kretinin A. , S. Novoselov K. , Eaves L. , V. Grigorieva I. , A. Ponomarenko L. , I. Fal’Ko V. , K. Geim A. . High-temperature quantum oscillations caused by recurring Bloch states in graphene superlatticess. Science, 2017, 357 : 181
https://doi.org/10.1126/science.aal3357
22 R. Woods C. , Ares P. , Nevison-Andrews H. , J. Holwill M. , Fabregas R. , Guinea F. , K. Geim A. , S. Novoselov K. , R. Walet N. , Fumagalli L. . Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun., 2021, 12 : 347
https://doi.org/10.1038/s41467-020-20667-2
23 V. Stern M. , Waschitz Y. , Cao W. , Nevo I. , Watanabe K. , Taniguchi T. , Sela E. , Urbakh M. , B. Shalom M. . Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372 : 1462
https://doi.org/10.1126/science.abe8177
24 Yasuda K. , Wang X. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. . Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372 : 1458
https://doi.org/10.1126/science.abd3230
25 Cai Q. , Scullion D. , G. Falin W. , Zhang S. , Watanabe K. , Taniguchi T. , CHEN Y. , J. G. Santos E. , H. Li L. . High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv., 2019, 5 : eaav0129
https://doi.org/10.1126/sciadv.aav0129
26 Ares P. , Cea T. , Holwill M. , B. Wang Y. , Roldán R. , Guinea F. , V. Andreeva D. , Fumagalli L. , S. Novoselov K. , R. Woods C. . Piezoelectricity in monolayer hexagonal boron nitride. Adv. Mater., 2020, 32 : 1905504
https://doi.org/10.1002/adma.201905504
27 Min H. , Hwang E. , Das Sarma S. . Chirality-dependent phonon-limited resistivity in multiple layers of graphene. Phys. Rev. B, 2011, 83 : 161404
https://doi.org/10.1103/PhysRevB.83.161404
28 Polshyn H. , Yankowitz M. , Chen S. , Zhang Y. , Watanabe K. , Taniguchi T. , R. Dean C. , F. Young A. . Large linear-in-temperature resistivity in twisted bilayer grapheme. Nat. Phys., 2019, 15 : 1011
https://doi.org/10.1038/s41567-019-0596-3
29 Wu F. , Hwang E. , Das Sarma S. . Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: Ordinary strangeness and exotic superconductivity. Phys. Rev. B, 2019, 99 : 165112
https://doi.org/10.1103/PhysRevB.99.165112
30 T. Lin I. , M. Liu J. . Surface polar optical phonon scattering of carriers in graphene on various substrates. Appl. Phys. Lett., 2013, 103 : 081606
https://doi.org/10.1063/1.4819395
31 Li X. , A. Barry E. , M. Zavada J. , B. Nardelli M. , W. Kim K. . Surface polar phonon dominated electron transport in grapheme. Appl. Phys. Lett., 2010, 97 : 232105
https://doi.org/10.1063/1.3525606
32 V. Gorbachev R. , K. Geim A. , I. Katsnelson M. , S. Novoselov K. , Tudorovskiy T. , V. Grigorieva I. , H. MacDonald A. , V. Morozov S. , Watanabe K. , Taniguchi T. , A. Ponomarenko L. . Strong coulomb drag and broken symmetry in double-layer grapheme. Nat. Phys., 2012, 8 : 896
https://doi.org/10.1038/NPHYS2441
[1] fop-21175-OF-yugeliang_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed