1. CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China 2. Department of Physics, Fuzhou University, Fuzhou 350108, China 3. ICQD, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
We numerically investigate the mesoscopic electronic transport properties of Bernal-stacked bilayer/trilayer graphene connected with four monolayer graphene terminals. In armchair-terminated metallic bilayer graphene, we show that the current from one incoming terminal can be equally partitioned into other three outgoing terminals near the charge-neutrality point, and the conductance periodically fluctuates, which is independent of the ribbon width but influenced by the interlayer hopping energy. This finding can be clearly understood by using the wave function matching method, in which a quantitative relationship between the periodicity, Fermi energy, and interlayer hopping energy can be reached. Interestingly, for the trilayer case, when the Fermi energy is located around the charge-neutrality point, the fractional quantized conductance 1/(4e2h) can be achieved when system exceeds a critical length.
Xu M., Liang T., Shi M., Chen H.. Graphene-like two-dimensional materials. Chem. Rev. , 2013, 113( 5): 3766 https://doi.org/10.1021/cr300263a
2
H. Wang Q., Kalantar-Zadeh K., Kis A., N. Coleman J., S. Strano M.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. , 2012, 7( 11): 699 https://doi.org/10.1038/nnano.2012.193
3
S. Novoselov K., Jiang D., Schedin F., J. Booth T., V. Khotkevich V., V. Morozov S., K. Geim A.. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA , 2005, 102( 30): 10451 https://doi.org/10.1073/pnas.0502848102
Zhou S., You L., Zhou H., Pu Y., Gui Z., Wang J.. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys. , 2021, 16( 1): 13301 https://doi.org/10.1007/s11467-020-0986-0
6
Z. Lu H., Q. Shen S.. Quantum transport in topological semimetals under magnetic fields. Front. Phys. , 2017, 12( 3): 127201 https://doi.org/10.1007/s11467-016-0609-y
7
Dong H., Guo S., Duan Y., Huang F., Xu W., Zhang J.. Electronic and optical properties of single-layer MoS2. Front. Phys. , 2018, 13( 4): 137307 https://doi.org/10.1007/s11467-018-0797-8
8
R. Hu X., M. Zheng J., Y. Ren Z.. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Front. Phys. , 2018, 13( 2): 137302 https://doi.org/10.1007/s11467-017-0736-0
T. Bi X., Jung J., H. Qiao Z.. Role of geometry and topological defects in the one-dimensional zero-line modes of graphene. Phys. Rev. B , 2015, 92( 23): 235421 https://doi.org/10.1103/PhysRevB.92.235421
11
Wang K., F. Ren Y., Z. Deng X., A. Yang S., Jung J., H. Qiao Z.. Gate-tunable current partition in graphene-based topological zero lines. Phys. Rev. B , 2017, 95( 24): 245420 https://doi.org/10.1103/PhysRevB.95.245420
12
H. Qiao Z., Jung J., Lin C., F. Ren Y., H. MacDonald A., Niu Q.. Current partition at topological channel intersections. Phys. Rev. Lett. , 2014, 112( 20): 206601 https://doi.org/10.1103/PhysRevLett.112.206601
13
H. Qiao Z., Jung J., Niu Q., H. MacDonald A.. Electronic highways in bilayer graphene. Nano Lett. , 2011, 11( 8): 3453 https://doi.org/10.1021/nl201941f
14
Hou T., Chen G., K. Tse W., Zeng C., Qiao Z.. Topological zero-line modes in folded bilayer graphene. Phys. Rev. B , 2018, 98( 24): 245417 https://doi.org/10.1103/PhysRevB.98.245417
15
Y. Peng X., Ahuja R.. Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett. , 2008, 8( 12): 4464 https://doi.org/10.1021/nl802409q
16
Giovannetti G., A. Khomyakov P., Brocks G., J. Kelly P., van den Brink J.. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B , 2007, 76( 7): 073103 https://doi.org/10.1103/PhysRevB.76.073103
17
Yao W., A. Yang S., Niu Q.. Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys. Rev. Lett. , 2009, 102( 9): 096801 https://doi.org/10.1103/PhysRevLett.102.096801
18
S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666 https://doi.org/10.1126/science.1102896
19
Zhang Y., W. Tan Y., L. Stormer H., Kim P.. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature , 2005, 438( 7065): 201 https://doi.org/10.1038/nature04235
H. Castro Neto A., Guinea F., M. R. Peres N., S. Novoselov K., K. Geim A.. The electronic properties of graphene. Rev. Mod. Phys. , 2009, 81( 1): 109 https://doi.org/10.1103/RevModPhys.81.109
22
Y. Zhou S., H. Gweon G., V. Fedorov A., N. First P., A. de Heer W., H. Lee D., Guinea F., H. Castro Neto A., Lanzara A.. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. , 2007, 6( 10): 770 https://doi.org/10.1038/nmat2003
23
M. M. Habib K., S. Sylvia S., Ge S., Neupane M., K. Lake R.. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite. Appl. Phys. Lett. , 2013, 103( 24): 243114 https://doi.org/10.1063/1.4841415
24
Ge S., M. M. Habib K., De A., Barlas Y., Wickramaratne D., R. Neupane M., K. Lake R.. Interlayer transport through a graphene/rotated boron nitride/graphene heterostructure. Phys. Rev. B , 2017, 95( 4): 045303 https://doi.org/10.1103/PhysRevB.95.045303
25
Xia F., B. Farmer D., Lin Y., Avouris P.. Graphene field-effect transistors with high On/Off current ratio and large transport band gap at room temperature. Nano Lett. , 2010, 10( 2): 715 https://doi.org/10.1021/nl9039636
26
Kim Y., Yun H., G. Nam S., Son M., S. Lee D., C. Kim D., Seo S., C. Choi H., J. Lee H., W. Lee S., S. Kim J.. Breakdown of the interlayer coherence in twisted bilayer graphene. Phys. Rev. Lett. , 2013, 110( 9): 096602 https://doi.org/10.1103/PhysRevLett.110.096602
Wang K., Hou T., F. Ren Y., H. Qiao Z.. Enhanced robustness of zero-line modes in graphene via magnetic field. Front. Phys. , 2019, 14( 2): 23501 https://doi.org/10.1007/s11467-018-0869-9
29
Wang R., Ren X., Yan Z., J. Jiang L., E. I. Sha W., C. Shan G.. Graphene based functional devices: A short review. Front. Phys. , 2019, 14( 1): 13603 https://doi.org/10.1007/s11467-018-0859-y
30
Z. Deng X., L. Yang H., F. Qi S., H. Xu X., H. Qiao Z.. Quantum anomalous Hall effect and giant Rashba spin−orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms. Front. Phys. , 2018, 13( 5): 137308 https://doi.org/10.1007/s11467-018-0806-y
31
J. Yin L., K. Bai K., X. Wang W., Y. Li S., Zhang Y., He L.. Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. , 2017, 12( 4): 127208 https://doi.org/10.1007/s11467-017-0655-0
32
L. Ge J., R. Wu T., Gao M., B. Bai Z., Cao L., F. Wang X., Y. Qin Y., Q. Song F.. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction. Front. Phys. , 2017, 12( 4): 127210 https://doi.org/10.1007/s11467-017-0677-7
33
Yan W., Y. Li S., J. Yin L., B. Qiao J., C. Nie J., He L.. Spatially resolving unconventional interface Landau quantization in a graphene monolayer-bilayer planar junction. Phys. Rev. B , 2016, 93( 19): 195408 https://doi.org/10.1103/PhysRevB.93.195408
34
J. Yin L., K. Bai K., X. Wang W., Y. Li S., Zhang Y., He L.. Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. , 2017, 12( 4): 127208 https://doi.org/10.1007/s11467-017-0655-0
35
Cho S., F. Chen Y., S. Fuhrer M.. Gate-tunable graphene spin valve. Appl. Phys. Lett. , 2007, 91( 12): 123105 https://doi.org/10.1063/1.2784934
36
T. Zhang Y., H. Qiao Z., F. Sun Q.. Detecting zero-line mode in bilayer graphene via the quantum Hall effect. Phys. Rev. B , 2013, 87( 23): 235405 https://doi.org/10.1103/PhysRevB.87.235405
37
Sui M., Chen G., Ma L., Y. Shan W., Tian D., Watanabe K., Taniguchi T., Jin X., Yao W., Xiao D., Zhang Y.. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys. , 2015, 11( 12): 1027 https://doi.org/10.1038/nphys3485
38
Meng L., D. Chu Z., Zhang Y., Y. Yang J., F. Dou R., C. Nie J., He L.. Enhanced intervalley scattering of twisted bilayer graphene by periodic AB stacked atoms. Phys. Rev. B , 2012, 85( 23): 235453 https://doi.org/10.1103/PhysRevB.85.235453
39
Ryzhii V., Otsuji T., Ryzhii M., Ya. Aleshkin V., A. Dubinov A., Mitin V., S. Shur M.. Vertical electron transport in van der Waals heterostructures with graphene layers. J. Appl. Phys. , 2015, 117( 15): 154504 https://doi.org/10.1063/1.4918313
40
W. González J., Santos H., Pacheco M., Chico L., Brey L.. Electronic transport through bilayer graphene flakes. Phys. Rev. B , 2010, 81( 19): 195406 https://doi.org/10.1103/PhysRevB.81.195406
41
Das Sarma S., Adam S., H. Hwang E., Rossi E.. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. , 2011, 83( 2): 407 https://doi.org/10.1103/RevModPhys.83.407
42
Nakanishi T., Koshino M., Ando T.. Transmission through a boundary between monolayer and bilayer graphene. Phys. Rev. B , 2010, 82( 12): 125428 https://doi.org/10.1103/PhysRevB.82.125428
43
Brey L., A. Fertig H.. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B , 2006, 73( 23): 235411 https://doi.org/10.1103/PhysRevB.73.235411
M. Abdullah H., Van Duppen B., Zarenia M., Bahlouli H., M. Peeters F.. Quantum transport across van der Waals domain walls in bilayer graphene. J. Phys.: Condens. Matter , 2017, 29( 42): 425303 https://doi.org/10.1088/1361-648X/aa81a8
46
M. Abdullah H., R. da Costa D., Bahlouli H., Chaves A., M. Peeters F., Van Duppen B.. Electron collimation at van der Waals domain walls in bilayer graphene. Phys. Rev. B , 2019, 100( 4): 045137 https://doi.org/10.1103/PhysRevB.100.045137
47
W. González J., Santos H., Prada E., Brey L., Chico L.. Gate-controlled conductance through bilayer graphene ribbons. Phys. Rev. B , 2011, 83( 20): 205402 https://doi.org/10.1103/PhysRevB.83.205402
48
Zheng H., F. Wang Z., Luo T., W. Shi Q., Chen J.. Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B , 2007, 75( 16): 165414 https://doi.org/10.1103/PhysRevB.75.165414
49
Santos H., Ayuela A., Jaskólski W., Pelc M., Chico L.. Interface states in carbon nanotube junctions: Rolling up graphene. Phys. Rev. B , 2009, 80( 3): 035436 https://doi.org/10.1103/PhysRevB.80.035436
50
Berger C., Song Z., Li X., Wu X., Brown N., Naud C., Mayou D., Li T., Hass J., N. Marchenkov A., H. Conrad E., N. First P., A. de Heer W.. Electronic confinement and coherence in patterned epitaxial graphene. Science , 2006, 312( 5777): 1191 https://doi.org/10.1126/science.1125925
Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., K. Banerjee S., Colombo L., S. Ruoff R.. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science , 2009, 324( 5932): 1312 https://doi.org/10.1126/science.1171245
53
S. Kim K., Zhao Y., Jang H., Y. Lee S., M. Kim J., S. Kim K., H. Ahn J., Kim P., Y. Choi J., H. Hong B.. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature , 2009, 457( 7230): 706 https://doi.org/10.1038/nature07719
54
X. Wang W. Zhou M. Li X. Y. Li S. Wu X. Duan W. He L., Energy gaps of atomically precise armchair graphene sidewall nanoribbons, Phys. Rev. B 93, 241403(R) ( 2016)
55
Kunstmann J., Özdogan C., Quandt A., Fehske H.. Stability of edge states and edge magnetism in graphene nanoribbons. Phys. Rev. B , 2011, 83( 4): 045414 https://doi.org/10.1103/PhysRevB.83.045414
56
Salemi L., Lherbier A., C. Charlier J.. Spin-dependent properties in zigzag graphene nanoribbons with phenyl-edge defects. Phys. Rev. B , 2018, 98( 21): 214204 https://doi.org/10.1103/PhysRevB.98.214204
57
Datta S., Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge UK, 1997