1. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Ultrawide bandgap semiconductor, e.g., diamond, is considered as the next generation of semiconductor. Here, a new orthorhombic carbon allotrope (P212121-C16) with ultrawide bandgap and ultra-large hardness is identified. The stability of the newly designed carbon is confirmed by the energy, phonon spectrum, ab-initio molecular dynamics and elastic constants. The hardness ranges from 88 GPa to 93 GPa according to different models, which is comparable to diamond. The indirect bandgap reaches 6.23 eV, which is obviously larger than that of diamond, and makes it a promising ultra-wide bandgap semiconductor. Importantly, the experimental possibility is confirmed by comparing the simulated X-ray diffraction with experimental results, and two hypothetical transformation paths to synthesize it from graphite are proposed.
Millan J., Godignon P., Perpina X., Perez-Tomas A., Rebollo J.. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. , 2014, 29( 5): 2155 https://doi.org/10.1109/TPEL.2013.2268900
2
Okumura H.. A roadmap for future wide bandgap semiconductor power electronics. MRS Bull. , 2015, 40( 5): 439 https://doi.org/10.1557/mrs.2015.97
3
R. Wilson P., Ferreira B., Zhang J., DiMarino C.. IEEE ITRW: International technology roadmap for wide-bandgap power semiconductors: An overview. IEEE Power Electron. Mag. , 2018, 5( 2): 22 https://doi.org/10.1109/MPEL.2018.2821938
4
Y. Tsao J., Chowdhury S., A. Hollis M., Jena D., M. Johnson N., A. Jones K., J. Kaplar R., Rajan S., G. Van de Walle C., Bellotti E., L. Chua C., Collazo R., E. Coltrin M., A. Cooper J., R. Evans K., Graham S., A. Grotjohn T., R. Heller E., Higashiwaki M., S. Islam M., W. Juodawlkis P., A. Khan M., D. Koehler A., H. Leach J., K. Mishra U., J. Nemanich R., C. N. Pilawa‐Podgurski R., B. Shealy J., Sitar Z., J. Tadjer M., F. Witulski A., Wraback M., A. Simmons J.. Ultrawide‐bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater. , 2018, 4( 1): 1600501 https://doi.org/10.1002/aelm.201600501
5
J. Baliga B.. Semiconductors for high‐voltage, vertical channel field‐effect transistors. J. Appl. Phys. , 1982, 53( 3): 1759 https://doi.org/10.1063/1.331646
6
Shi X., He C., J. Pickard C., Tang C., Zhong J.. Stochastic generation of complex crystal structures combining group and graph theory with application to carbon. Phys. Rev. B , 2018, 97( 1): 014104 https://doi.org/10.1103/PhysRevB.97.014104
7
Gao P., Gao B., Lu S., Liu H., Lv J., Wang Y., Ma Y.. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys. , 2022, 17( 2): 23203 https://doi.org/10.1007/s11467-021-1109-2
Tong W., Wei Q., Yan H.-Y., Zhang M.-G., Zhu X.-M.. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes. Front. Phys. , 2020, 15( 6): 63501 https://doi.org/10.1007/s11467-020-0970-8
10
W. Kroto H., R. Heath J., C. O’Brien S., F. Curl R., E. Smalley R.. C60: Buckminsterfullerene. Nature , 1985, 318( 6042): 162 https://doi.org/10.1038/318162a0
S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666 https://doi.org/10.1126/science.1102896
Occelli F., Loubeyre P., Letoullec R.. Properties of diamond under hydrostatic pressures up to 140 GPa. Nat. Mater. , 2003, 2( 3): 151 https://doi.org/10.1038/nmat831
16
-Y. Ding X., Zhang C., -Q. Wang D., -S. Li B., Wang Q., G. Yu Z., -W. Ang K., -W. Zhang Y.. A new carbon allotrope: T5-carbon. Scr. Mater. , 2020, 189 : 72 https://doi.org/10.1016/j.scriptamat.2020.08.004
T. Wang J., Chen C., Mizuseki H.. Body centered cubic carbon BC14: An all-sp3 bonded full-fledged pentadiamond. Phys. Rev. B , 2020, 102( 18): 184106 https://doi.org/10.1103/PhysRevB.102.184106
19
Liu J., Gao Q., Hu Z.. HSH-carbon: A novel sp2–sp3 carbon allotrope with an ultrawide energy gap. Front. Phys. , 2022, 17( 6): 63505 https://doi.org/10.1007/s11467-022-1187-9
20
Lv R., Yang X., Yang D., Niu C., Zhao C., Qin J., Zang J., Dong F., Dong L., Shan C.. Computational prediction of a novel superhard sp3 trigonal carbon allotrope with bandgap larger than diamond. Chin. Phys. Lett. , 2021, 38( 7): 076101 https://doi.org/10.1088/0256-307X/38/7/076101
21
He C., Shi X., J. Clark S., Li J., J. Pickard C., Ouyang T., Zhang C., Tang C., Zhong J.. Complex low energy tetrahedral polymorphs of group IV elements from first principles. Phys. Rev. Lett. , 2018, 121( 17): 175701 https://doi.org/10.1103/PhysRevLett.121.175701
22
Zhu Q., R. Oganov A., A. Salvadó M., Pertierra P., O. Lyakhov A.. Denser than diamond: Ab initio search for superdense carbon allotropes. Phys. Rev. B , 2011, 83( 19): 193410 https://doi.org/10.1103/PhysRevB.83.193410
23
Zhang X., Wang Y., Lv J., Zhu C., Li Q., Zhang M., Li Q., Ma Y.. First-principles structural design of superhard materials. J. Chem. Phys. , 2013, 138( 11): 114101 https://doi.org/10.1063/1.4794424
24
Wang J., Chen C., Kawazoe Y.. Orthorhombic carbon allotrope of compressed graphite: Ab initio calculations. Phys. Rev. B , 2012, 85( 3): 033410 https://doi.org/10.1103/PhysRevB.85.033410
J. Karttunen A., F. Fässler T., Linnolahti M., A. Pakkanen T.. Structural principles of semiconducting group 14 clathrate frameworks. Inorg. Chem. , 2011, 50( 5): 1733 https://doi.org/10.1021/ic102178d
27
Yin H., Shi X., He C., Martinez-Canales M., Li J., J. Pickard C., Tang C., Ouyang T., Zhang C., Zhong J.. Stone−Wales graphene: A two-dimensional carbon semimetal with magic stability. Phys. Rev. B , 2019, 99( 4): 041405 https://doi.org/10.1103/PhysRevB.99.041405
28
J. Clark S., D. Segall M., J. Pickard C., J. Hasnip P., I. J. Probert M., Refson K., C. Payne M.. First principles methods using CASTEP. Z. Kristallogr. , 2005, 220 : 567 https://doi.org/10.1524/zkri.220.5.567.65075
29
E. Peralta J., Heyd J., E. Scuseria G., L. Martin R.. Spin−orbit splittings and energy band gaps calculated with the Heyd−Scuseria−Ernzerhof screened hybrid functional. Phys. Rev. B , 2006, 74( 7): 073101 https://doi.org/10.1103/PhysRevB.74.073101
Vanderbilt D.. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B , 1990, 41( 11): 7892 https://doi.org/10.1103/PhysRevB.41.7892
33
G. Pfrommer B., Côté M., G. Louie S., L. Cohen M.. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. , 1997, 131( 1): 233 https://doi.org/10.1006/jcph.1996.5612
34
Baroni S., de Gironcoli S., Dal Corso A., Giannozzi P.. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. , 2001, 73( 2): 515 https://doi.org/10.1103/RevModPhys.73.515
35
Liao M., Liu Y., Zhou F., Han T., Yang D., Qu N., Lai Z.. A high-efficient strain-stress method for calculating higher-order elastic constants from first-principles. Comput. Phys. Commun. , 2022, 280 : 108478 https://doi.org/10.1016/j.cpc.2022.108478
36
Liao M., Liu Y., Shang S.-L., Zhou F., Qu N., Chen Y., Lai Z., Liu Z.-K., Zhu J.. Elastic3rd: A tool for calculating third-order elastic constants from first-principles calculations. Comput. Phys. Commun. , 2021, 261 : 107777 https://doi.org/10.1016/j.cpc.2020.107777
37
Liao M., Liu Y., Wang Y., Zhou F., Qu N., Han T., Yang D., Lai Z., Liu Z.-K., Zhu J.. Revisiting the third-order elastic constants of diamond: The higher-order effect. Diam. Relat. Mater. , 2021, 117 : 108490 https://doi.org/10.1016/j.diamond.2021.108490
Liao M., Liu Y., Cui P., Qu N., Zhou F., Yang D., Han T., Lai Z., Zhu J.. Modeling of alloying effect on elastic properties in BCC Nb−Ti−V−Zr solid solution: From unary to quaternary. Comput. Mater. Sci. , 2020, 172 : 109289 https://doi.org/10.1016/j.commatsci.2019.109289
A. Blatov V., P. Shevchenko A., M. Proserpio D.. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. , 2014, 14( 7): 3576 https://doi.org/10.1021/cg500498k
42
A. Blatov V., A. Blatova O., Daeyaert F., W. Deem M.. Nanoporous materials with predicted zeolite topologies. RSC Adv. , 2020, 10( 30): 17760 https://doi.org/10.1039/d0ra01888k
43
Hoffmann R., A. Kabanov A., A. Golov A., M. Proserpio D.. Homo citans and carbon allotropes: For an ethics of citation. Angew. Chemie Int. Ed. , 2016, 55( 37): 10962 https://doi.org/10.1002/anie.201600655
44
Al-Fahdi M., Rodriguez A., Ouyang T., Hu M.. High-throughput computation of new carbon allotropes with diverse hybridization and ultrahigh hardness. Crystals , 2021, 11( 7): 783 https://doi.org/10.3390/cryst11070783
45
A. Anurova N., A. Blatov V., D. Ilyushin G., M. Proserpio D.. Natural tilings for zeolite-type frameworks. J. Phys. Chem. C , 2010, 114( 22): 10160 https://doi.org/10.1021/jp1030027
46
Delgado-Friedrichs O., O’Keeffe M.. Identification of and symmetry computation for crystal nets. Acta Crystallogr. Sect. A Found. Crystallogr. , 2003, 59( 4): 351 https://doi.org/10.1107/S0108767303012017
47
Wang J.-T., Weng H., Nie S., Fang Z., Kawazoe Y., Chen C.. Body-centered orthorhombic C16 : A novel topological node-line semimetal. Phys. Rev. Lett. , 2016, 116( 19): 195501 https://doi.org/10.1103/PhysRevLett.116.195501
48
N. Matyushenko N., E. Strel’Nitskiǐ V., A. Gusev V.. A dense new version of crystalline carbon C8. JETP Lett. , 1979, 30( 4): 199
49
L. Johnston R., Hoffmann R.. Superdense carbon, C8: supercubane or analog of . gamma. -silicon?. J. Am. Chem. Soc. , 1989, 111( 3): 810 https://doi.org/10.1021/ja00185a004
50
Li Z.-Z., Lian C.-S., Xu J., Xu L.-F., Wang J.-T., Chen C.. Computational prediction of body-centered cubic carbon in an all-sp3 six-member ring configuration. Phys. Rev. B , 2015, 91( 21): 214106 https://doi.org/10.1103/PhysRevB.91.214106
51
-T. Wang J., Chen C., Wang E., Kawazoe Y.. A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks. Sci. Rep. , 2015, 4( 1): 4339 https://doi.org/10.1038/srep04339
52
Mouhat F., Coudert F.-X.. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B , 2014, 90( 22): 224104 https://doi.org/10.1103/PhysRevB.90.224104
53
F. Pugh S.. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh, Dublin Philos. Mag. J. Sci. , 1954, 45( 367): 823 https://doi.org/10.1080/14786440808520496
54
Chen X., Niu H., Li D., Li Y.. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics , 2011, 19( 9): 1275 https://doi.org/10.1016/j.intermet.2011.03.026
55
Tian Y., Xu B., Zhao Z.. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. , 2012, 33 : 93 https://doi.org/10.1016/j.ijrmhm.2012.02.021
56
Mazhnik E., R. Oganov A.. A model of hardness and fracture toughness of solids. J. Appl. Phys. , 2019, 126( 12): 125109 https://doi.org/10.1063/1.5113622
57
Liao M., Liu Y., Lai Z., Zhu J., dependence of second-order elastic constants from third-order elastic constants in TMC (TM=Nb Pressure. Zr). Ceram. Int. , 2021, 47( 19): 27535 https://doi.org/10.1016/j.ceramint.2021.06.177
58
R. Rao R., Padmaja A.. Effective second-order elastic constants of a strained crystal using the finite strain elasticity theory. J. Appl. Phys. , 1987, 62( 2): 440 https://doi.org/10.1063/1.339818
59
J. McSkimin H., Andreatch P.. Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys. , 1972, 43( 7): 2944 https://doi.org/10.1063/1.1661636
Wang J., Chen C., Kawazoe Y.. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys. Rev. Lett. , 2011, 106( 7): 075501 https://doi.org/10.1103/PhysRevLett.106.075501
62
Q. Wang J., X. Zhao C., Y. Niu C., Sun Q., Jia Y.. C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities. J. Phys.: Condens. Matter , 2016, 28( 47): 475402 https://doi.org/10.1088/0953-8984/28/47/475402
63
Mujica A., J. Pickard C., J. Needs R.. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Phys. Rev. B , 2015, 91( 21): 214104 https://doi.org/10.1103/PhysRevB.91.214104
64
D. Landau L. M. Lifshitz E., in: Electrodynamics of Continuous Media (2nd Ed. ), Eds. L. D. Landau and E. M. Lifshitz, Pergamon, Amsterdam, Second Edi. ( 1984), Vol. 8, pp 257– 289
65
Pantea D., Brochu S., Thiboutot S., Ampleman G., Scholz G.. A morphological investigation of soot produced by the detonation of munitions. Chemosphere , 2006, 65( 5): 821 https://doi.org/10.1016/j.chemosphere.2006.03.027
Li Q., Ma Y., R. Oganov A., Wang H., Wang H., Xu Y., Cui T., Mao H.-K., Zou G.. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. , 2009, 102( 17): 175506 https://doi.org/10.1103/PhysRevLett.102.175506
69
He C., Sun L., Zhang C., Peng X., Zhang K., Zhong J.. New superhard carbon phases between graphite and diamond. Solid State Commun. , 2012, 152( 16): 1560 https://doi.org/10.1016/j.ssc.2012.05.022
70
He C., X. Zhang C., Z. Sun L., Jiao N., W. Zhang K., Zhong J.. Structure, stability and electronic properties of tricycle type graphane. Phys. Status Solidi - Rapid Res. Lett. , 2012, 6( 11): 427 https://doi.org/10.1002/pssr.201206358
71
Niu H., Chen X.-Q., Wang S., Li D., L. Mao W., Li Y.. Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. Phys. Rev. Lett. , 2012, 108( 13): 135501 https://doi.org/10.1103/PhysRevLett.108.135501