Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (1): 13603   https://doi.org/10.1007/s11467-022-1208-8
  本期目录
Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond
Jing Zhang1,2, Zixiang Cui1,2, Jie Liu3, Chunjie Li2, Haoyi Tan4,5, Guangcun Shan4,5(), Ruguang Ma2()
1. School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
2. School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
3. State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
4. Shenzhen Beihang Emerging Industry Technology Research Institute, University Park, No. 2 Yuexing Three Road, Shenzhen 518052, China
5. School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100083, China
 全文: PDF(9734 KB)   HTML
Abstract

Oxygen electrocatalysts are of great importance for the air electrode in zinc–air batteries (ZABs). Owing to large surface area, high electrical conductivity and ease of modification, two-dimensional (2D) materials have been widely studied as oxygen electrocatalysts for the rechargable ZABs. The elaborately modified 2D materials-based electrocatalysts, usually exhibit excellent performance toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which have attracted extensive interests of worldwide researchers. Given the rapid development of bifunctional electrocatalysts toward ORR and OER, the latest progress of non-noble electrocatalysts based on layered double hydroxides (LDHs), graphene, and MXenes are intensively reviewed. The discussion ranges from fundamental structure, synthesis, electrocatalytic performance of these catalysts, as well as their applications in the rechargeable ZABs. Finally, the challenges and outlook are provided for further advancing the commercialization of rechargeable ZABs.

Key wordsMXenes    oxygen reduction reaction    oxygen evolution reaction    electrocatalysts    zinc–air battery
出版日期: 2022-11-03
Corresponding Author(s): Guangcun Shan,Ruguang Ma   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(1): 13603.
Jing Zhang, Zixiang Cui, Jie Liu, Chunjie Li, Haoyi Tan, Guangcun Shan, Ruguang Ma. Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond. Front. Phys. , 2023, 18(1): 13603.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1208-8
https://academic.hep.com.cn/fop/CN/Y2023/V18/I1/13603
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Materials OER: Ej=10 (V vs. RHE) / Overpotential (mV) ORR: Eonset / E1/2 (V vs. RHE) ΔE = Ej=10E1/2 (V) Open-circuit voltage (V) Peak power density (mW·cm−2) Specific Capacity (mAh·g−1) @ Current density (mA·cm−2) Cycle stability time (h) @ Current density (mA·cm−2) Ref.
CoS2@MXene −/270 0.87/0.8 1.46 29 [19]
SrTiO3/Ti3C2 −/0.78 0.648 1.44 122 789@5 [56]
Fe-Co/CNT@MXene-8 −/390 1.02/0.85 0.73 1.41 165 759@10 350@10 [57]
Nb2CO2/MXene −/435 −/0.79 1.09 [65]
LDH/MQDs/NG 1.5/− 0.81/0.69 1.42 113.8 598@5 150@5 [66]
H2PO2/FeNi-LDH-V2C −/250 0.89/0.8 0.673 1.42 100@5 [67]
NiCoFeLDH/Mxene/NCNT −/332 0.93/0.78 1.54 [68]
NiCo2O4/MXene −/310 −/0.7 1.4 55.1 333@5 [69]
Co3O4/2D Ti3C2 MXene 1.53/− [70]
TiO2C@CNx,950 1.50/ −/0.75 0.75 1.344 48@10 [71]
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Materials OER: Ej=10 (V vs. RHE)/ Overpotential (mV) ORR: Eonset / E1/2 (V vs. RHE) ΔE = Ej=10 E1/2 (V) Open-circuit voltage (V) Peak power density (mW·cm−2) Specific Capacity (mAh·g−1) @ Current Density (mA·cm−2) Cycle stability time (h) @ Current density (mA·cm−2) Ref.
Co9S8/Co–rGO −/290 0.97/0.79 1.34 122 720.1@10 300@5 [89]
AT-Co/NDG 1.54/− −/0.86 0.68 319.8 746.4@50 [90]
Trimodal NG/Ni 1.5/270 −/0.86 0.64 1.49 165 743@5 2500@2400@20 [76]
NiFe-Mi-C-Gr 1.535/− −/0.854 0.681 1.487 111 809@10 102@10 [91]
FeNC/NG-3 /0.83 1.43 29.5 848.2@10 [92]
B-Zn-FeNG 1.54/310 1.03/0.89 0.65 229 752@5 80@10 [88]
Ru-RuO2@NPC 1.45/− −/0.8 0.65 1.43 137 [24]
CoS/CoO@NGNs 1.61/ −/0.84 0.77 137.8 711.1@20 100@10 [93]
CoDNG900 1.614/ 0.943/0.864 0.75 1.45 205 669@10 667@10 [94]
NSP-Gra 1.76 0.94 225 40@215@5 [95]
Fe-N-C/2rGO 1.56/ −/0.88 0.68 1.47 164 30@10 [96]
Co3O4−NiCo2O4 /N-RGO 1.62/390 −/0.79 0.83 1.49 97 180@290@10 [97]
FeCoNi-N-rGO 1.67/ −/0.836 0.834 1.43 152.5 766@5 200@5 [98]
CN@NC-2-800 1.66/400 −/0.83 0.83 1.52 172 806.9@10 300@10 [99]
Tab.2  
Fig.8  
Fig.9  
Air catalyst Electrolyte Ej=10 E1/2 ΔE (Ej=10E1/2) Cycles or time (h) @ Current density (mA·cm−2) Ref.
NiFe(1:2)P/Pi KOH 0.62V 300 cycles@10 [123]
NiFe-LDH/FeSoy-CNSs-A KOH 1.53V 0.91V 0.62V 300 cycles@5 [124]
nNiFe LDH/3D MPC KOH 1.572V 0.862V 0.71V 100 cycles@10 [127]
Cu@Cu NWs@LDH KOH 1.44V 0.719V 0.721V 240 h@10 [128]
CoNC@LDH KOH 1.47V 0.84V 0.63V 3600 cycles@10 [129]
NiCo2O4@FeNi LDH/Ni KOH 90 h@10 [130]
Tab.3  
Fig.10  
1 Han J., Chang H.. Development and opportunities of clean energy in China. Appl. Sci. (Basel), 2022, 12(9): 4783
https://doi.org/10.3390/app12094783
2 S. Martins L., F. Guimarães L., B. Botelho Junior A., A. S. Tenório J., C. R. Espinosa D.. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manage., 2021, 295: 113091
https://doi.org/10.1016/j.jenvman.2021.113091
3 O. Moraga N., P. Xamán J., H. Araya R.. Cooling Li-ion batteries of racing solar car by using multiple phase change materials. Appl. Therm. Eng., 2016, 108: 1041
https://doi.org/10.1016/j.applthermaleng.2016.07.183
4 A. Notter D., Gauch M., Widmer R., Wäger P., Stamp A., Zah R., J. Althaus H.. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol., 2010, 44(17): 6550
https://doi.org/10.1021/es903729a
5 Zeng X., Li J., Liu L.. Solving spent lithium-ion battery problems in China: Opportunities and challenges. Renew. Sustain. Energy Rev., 2015, 52: 1759
https://doi.org/10.1016/j.rser.2015.08.014
6 Jiao H., Jiao S., L. Song W., Xiao X., She D., Li N., Chen H., Tu J., Wang M., Fang D.. Al homogeneous deposition induced by N-containing functional groups for enhanced cycling stability of Al-ion battery negative electrode. Nano Res., 2021, 14(3): 646
https://doi.org/10.1007/s12274-020-3088-y
7 Li J., Kong Z., Liu X., Zheng B., H. Fan Q., Garratt E., Schuelke T., Wang K., Xu H., Jin H.. Strategies to anode protection in lithium metal battery: A review. InfoMat, 2021, 3(12): 1333
https://doi.org/10.1002/inf2.12189
8 Chen S., Gao Z., Sun T.. Safety challenges and safety measures of Li-ion batteries. Energy Sci. Eng., 2021, 9(9): 1647
https://doi.org/10.1002/ese3.895
9 P. Finegan D., Zhu J., Feng X., Keyser M., Ulmefors M., Li W., Z. Bazant M., J. Cooper S.. The application of data-driven methods and physics-based learning for improving battery safety. Joule, 2021, 5(2): 316
https://doi.org/10.1016/j.joule.2020.11.018
10 Xu B., Lee J., Kwon D., Kong L., Pecht M.. Mitigation strategies for Li-ion battery thermal runaway: A review. Renew. Sustain. Energy Rev., 2021, 150: 111437
https://doi.org/10.1016/j.rser.2021.111437
11 Abbas M., Cho I., Kim J.. Scalable constrained attributes/issues about risk, reliability and optimization in large scale battery pack. J. Energy Storage, 2021, 39: 102632
https://doi.org/10.1016/j.est.2021.102632
12 Kovachev G., Astner A., Gstrein G., Aiello L., Hemmer J., Sinz W., Ellersdorfer C.. Thermal conductivity in aged Li-ion cells under various compression conditions and state-of-charge. Batteries, 2021, 7(3): 42
https://doi.org/10.3390/batteries7030042
13 Liu H., Liu Q., Wang Y., Wang Y., Chou S., Hu Z., Zhang Z.. Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chin. Chem. Lett., 2022, 33(2): 683
https://doi.org/10.1016/j.cclet.2021.07.038
14 Li W., Chen W., Zhang H., Zhang Z.. Integratable solid-state zinc−air battery with extended cycle life inspired by bionics. Chem. Eng. J., 2022, 435: 134900
https://doi.org/10.1016/j.cej.2022.134900
15 R. Mainar A., Iruin E., A. Blázquez J.. High performance secondary zinc-air/silver hybrid battery. J. Energy Storage, 2021, 33: 102103
https://doi.org/10.1016/j.est.2020.102103
16 Wang S., Chen S., Ma L., A. Zapien J.. Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc−air battery applications. Mater. Today Energy, 2021, 20: 100659
https://doi.org/10.1016/j.mtener.2021.100659
17 Zhou J., Shan L., Wu Z., Guo X., Fang G., Liang S.. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun., 2018, 54: 4457
https://doi.org/10.1039/C8CC02250J
18 Jayasayee K., Clark S., King C., I. Dahl P., Richard Tolchard J., Juel M.. Cold sintering as a cost-effective process to manufacture porous zinc electrodes for rechargeable zinc-air batteries. Processes (Basel), 2020, 8(5): 592
https://doi.org/10.3390/pr8050592
19 Han S., Chen Y., Hao Y., Xie Y., Xie D., Chen Y., Xiong Y., He Z., Hu F., Li L., Zhu J., Peng S.. Multi-dimensional hierarchical CoS2@MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting. Sci. China Mater., 2021, 64(5): 1127
https://doi.org/10.1007/s40843-020-1524-5
20 Huang J., Xie Y., Yan L., Wang B., Kong T., Dong X., Wang Y., Xia Y.. Decoupled amphoteric water electrolysis and its integration with Mn–Zn battery for flexible utilization of renewables. Energy Environ. Sci., 2021, 14(2): 883
https://doi.org/10.1039/D0EE03639K
21 Zhou C., Chen X., Liu S., Han Y., Meng H., Jiang Q., Zhao S., Wei F., Sun J., Tan T., Zhang R.. Superdurable bifunctional oxygen electrocatalyst for high-performance zinc–air batteries. J. Am. Chem. Soc., 2022, 144(6): 2694
https://doi.org/10.1021/jacs.1c11675
22 Han C., Li W., K. Liu H., Dou S., Wang J.. Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Mater. Horiz., 2019, 6(9): 1812
https://doi.org/10.1039/C9MH00502A
23 Chen Z., Y. Choi J., Wang H., Li H., Chen Z.. Highly durable and active non-precious air cathode catalyst for zinc air battery. J. Power Sources, 2011, 196(7): 3673
https://doi.org/10.1016/j.jpowsour.2010.12.047
24 Wang N., Ning S., Yu X., Chen D., Li Z., Xu J., Meng H., Zhao D., Li L., Liu Q., Lu B., Chen S.. Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc–air batteries. Appl. Catal. B, 2022, 302: 120838
https://doi.org/10.1016/j.apcatb.2021.120838
25 Zhu Q., Qu Y., Liu D., W. Ng K., Pan H.. Two-dimensional layered materials: High-efficient electrocatalysts for hydrogen evolution reaction. ACS Appl. Nano Mater., 2020, 3(7): 6270
https://doi.org/10.1021/acsanm.0c01331
26 Yu L., Li F., Zhao J., Chen Z.. Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles. Adv. Powder Mater., 2022, 1(3): 100031
https://doi.org/10.1016/j.apmate.2022.01.004
27 Xia C., Zhou Y., He C., I. Douka A., Guo W., Qi K., Y. Xia B.. Recent advances on electrospun nanomaterials for zinc–air batteries. Small Sci., 2021, 1(9): 2100010
https://doi.org/10.1002/smsc.202100010
28 Zhang Z., Zhang H., Yao Y., Wang J., Guo H., Deng Y., Han X.. Controlled synthesis and structure engineering of transition metal-based nanomaterials for oxygen and hydrogen electrocatalysis in zinc-air battery and water-splitting devices. ChemSusChem, 2021, 14(7): 1659
https://doi.org/10.1002/cssc.202002944
29 Zhang Z., Tan Y., Zeng T., Yu L., Chen R., Cheng N., Mu S., Sun X.. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn−air batteries. Nano Res., 2021, 14(7): 2353
https://doi.org/10.1007/s12274-020-3234-6
30 Ren D., Ying J., Xiao M., P. Deng Y., Ou J., Zhu J., Liu G., Pei Y., Li S., M. Jauhar A., Jin H., Wang S., Su D., Yu A., Chen Z.. Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc–air batteries. Adv. Funct. Mater., 2020, 30(7): 1908167
https://doi.org/10.1002/adfm.201908167
31 Sun H., Wang M., Zhang S., Liu S., Shen X., Qian T., Niu X., Xiong J., Yan C.. Boosting oxygen dissociation over bimetal sites to facilitate oxygen reduction activity of zinc−air battery. Adv. Funct. Mater., 2021, 31(4): 2006533
https://doi.org/10.1002/adfm.202006533
32 Zhong X., Ye S., Tang J., Zhu Y., Wu D., Gu M., Pan H., Xu B.. Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc−air battery. Appl. Catal. B, 2021, 286: 119891
https://doi.org/10.1016/j.apcatb.2021.119891
33 Han J.Bao H.Q. Wang J.Zheng L.Sun S. L. Wang Z.Sun C., 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc−air battery, Appl. Catal. B 280, 119411 (2021)
34 Han X., Zhang T., Chen W., Dong B., Meng G., Zheng L., Yang C., Sun X., Zhuang Z., Wang D., Han A., Liu J.. Mn-N 4 oxygen reduction electrocatalyst: Operando investigation of active sites and high performance in zinc–air battery. Adv. Energy Mater., 2021, 11(6): 2002753
https://doi.org/10.1002/aenm.202002753
35 Wu W., Liu Y., Liu D., Chen W., Song Z., Wang X., Zheng Y., Lu N., Wang C., Mao J., Li Y.. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc−air battery. Nano Res., 2021, 14(4): 998
https://doi.org/10.1007/s12274-020-3141-x
36 Zhang J., Zhou Q., Tang Y., Zhang L., Li Y.. Zinc–air batteries: are they ready for prime time. Chem. Sci. (Camb. ), 2019, 10(39): 8924
https://doi.org/10.1039/C9SC04221K
37 Wu M., Wang Y., Wei Z., Wang L., Zhuo M., Zhang J., Han X., Ma J.. Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries. J. Mater. Chem. A, 2018, 6(23): 10918
https://doi.org/10.1039/C8TA02416B
38 Zheng Y., Jiao Y., Zhu Y., Cai Q., Vasileff A., H. Li L., Han Y., Chen Y., Z. Qiao S.. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc., 2017, 139(9): 3336
https://doi.org/10.1021/jacs.6b13100
39 Han C., Li W., K. Liu H., Dou S., Wang J.. Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Mater. Horiz., 2019, 6(9): 1812
https://doi.org/10.1039/C9MH00502A
40 Cai X., Lai L., Lin J., Shen Z.. Recent advances in air electrodes for Zn–air batteries: Electrocatalysis and structural design. Mater. Horiz., 2017, 4(6): 945
https://doi.org/10.1039/C7MH00358G
41 Li Y., Dai H.. Recent advances in zinc–air batteries. Chem. Soc. Rev., 2014, 43(15): 5257
https://doi.org/10.1039/C4CS00015C
42 Zhu Y., Yue K., Xia C., Zaman S., Yang H., Wang X., Yan Y., Y. Xia B.. Recent advances on MoF derivatives for non-noble metal oxygen electrocatalysts in zinc−air batteries. Nano-Micro Lett., 2021, 13(1): 137
https://doi.org/10.1007/s40820-021-00669-5
43 Shao M., Chang Q., P. Dodelet J., Chenitz R.. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev., 2016, 116(6): 3594
https://doi.org/10.1021/acs.chemrev.5b00462
44 Reier T., Oezaslan M., Strasser P., oxygen evolution reaction (OER) on Ru Electrocatalytic. Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal., 2012, 2(8): 1765
https://doi.org/10.1021/cs3003098
45 Huang S., Zhu J., Tian J., Niu Z.. Recent progress in the electrolytes of aqueous zinc-ion batteries. Chemistry, 2019, 25(64): 14480
https://doi.org/10.1002/chem.201902660
46 Hao J., Li X., Zhang S., Yang F., Zeng X., Zhang S., Bo G., Wang C., Guo Z.. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater., 2020, 30(30): 2001263
https://doi.org/10.1002/adfm.202001263
47 Zhang Y., Yang G., L. Lehmann M., Wu C., Zhao L., Saito T., Liang Y., Nanda J., Yao Y.. Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett., 2021, 21(24): 10446
https://doi.org/10.1021/acs.nanolett.1c03792
48 Qin R., Shan G., Hu M., Huang W.. Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Physics, 2021, 21: 100527
https://doi.org/10.1016/j.mtphys.2021.100527
49 Li K.Liang M. Wang H.Wang X.Huang Y.Coelho J.Pinilla S. Zhang Y.Qi F.Nicolosi V.Xu Y., 3D MXene architectures for efficient energy storage and conversion, Adv. Funct. Mater. 30(47), 2000842 (2020)
50 Wang J., F. Du C., Xue Y., Tan X., Kang J., Gao Y., Yu H., Yan Q.. MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration, 2021, 1(2): 20210024
https://doi.org/10.1002/EXP.20210024
51 Li K.Liang M. Wang H.Wang X.Huang Y.Coelho J.Pinilla S. Zhang Y.Qi F.Nicolosi V.Xu Y., 3D MXene architectures for efficient energy storage and conversion, Adv. Funct. Mater. 30(47), 2000842 (2020)
52 Zhang X., Xu J., Wang H., Zhang J., Yan H., Pan B., Zhou J., Xie Y.. Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2. Angew. Chem. Int. Ed., 2013, 52(16): 4361
https://doi.org/10.1002/anie.201300285
53 Halim J., R. Lukatskaya M., M. Cook K., Lu J., R. Smith C., A. Näslund L., J. May S., Hultman L., Gogotsi Y., Eklund P., W. Barsoum M.. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater., 2014, 26(7): 2374
https://doi.org/10.1021/cm500641a
54 Xu C., Wang L., Liu Z., Chen L., Guo J., Kang N., L. Ma X., M. Cheng H., Ren W.. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater., 2015, 14(11): 1135
https://doi.org/10.1038/nmat4374
55 Wang Y., Gu F., Cao L., Fan L., Hou T., Zhu Q., Wu Y., Xiong S.. TiCN MXene hybrid BCN nanotubes with trace level Co as an efficient ORR electrocatalyst for Zn-air batteries. Int. J. Hydrogen Energy, 2022, 47(48): 20894
https://doi.org/10.1016/j.ijhydene.2022.04.211
56 Hui X., Zhang P., Wang Z., Zhao D., Li Z., Zhang Z., Wang C., Yin L.. Vacancy defect-rich perovskite SrTiO3/Ti3C2 heterostructures in situ derived from Ti3C2 MXenes with exceptional oxygen catalytic activity for advanced Zn–air batteries. ACS Appl. Energy Mater., 2022, 5(5): 6100
https://doi.org/10.1021/acsaem.2c00494
57 Zhang C.Dong H.Chen B.Jin T.Nie J. Ma G., 3D MXene anchored carbon nanotube as bifunctional and durable oxygen catalysts for Zn−air batteries, Carbon 185, 17 (2021)
58 Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., W. Barsoum M.. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37): 4248
https://doi.org/10.1002/adma.201102306
59 Zaman W.A. Matsumoto R.W. Thompson M.H. Liu Y.Bootwala Y. B. Dixit M.Nemsak S.Crumlin E.C. Hatzell M.T. Cummings P.B. Hatzell K., In situ investigation of water on MXene interfaces, Proc. Natl. Acad. Sci. USA 118(49), e2108325118 (2021)
60 Zhou T., Wu C., Wang Y., P. Tomsia A., Li M., Saiz E., Fang S., H. Baughman R., Jiang L., Cheng Q.. Super-tough MXene-functionalized graphene sheets. Nat. Commun., 2020, 11(1): 2077
https://doi.org/10.1038/s41467-020-15991-6
61 Qin R.Hu M.Li X.Liang T.Tan H. Liu J.Shan G., A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor, Microsyst. Nanoeng. 7(1), 100 (2021)
62 Y. Ma T., L. Cao J., Jaroniec M., Z. Qiao S.. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed., 2016, 55(3): 1138
https://doi.org/10.1002/anie.201509758
63 L. Li G., Cao S., F. Lu Z., Wang X., Yan Y., Hao C.. FePc nanoclusters modified NiCo layered double hydroxides in parallel with Ti3C2 MXene as a highly efficient and durable bifunctional oxygen electrocatalyst for zinc−air batteries. Appl. Surf. Sci., 2022, 591: 153142
https://doi.org/10.1016/j.apsusc.2022.153142
64 Wei B., Fu Z., Legut D., C. Germann T., Du S., Zhang H., S. Francisco J., Zhang R.. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv. Mater., 2021, 33(40): 2102595
https://doi.org/10.1002/adma.202102595
65 Zong H., Liu W., Li M., Gong S., Yu K., Zhu Z.. Oxygen-terminated Nb2CO2 MXene with interfacial self-assembled COF as a bifunctional catalyst for durable zinc–air batteries. ACS Appl. Mater. Interfaces, 2022, 14(8): 10738
https://doi.org/10.1021/acsami.1c25264
66 Han X., Li N., Xiong P., G. Jung M., Kang Y., Dou Q., Liu Q., Y. Lee J., S. Park H.. Electronically coupled layered double hydroxide/ MXene quantum dot metallic hybrids for high-performance flexible zinc–air batteries. InfoMat, 2021, 3(10): 1134
https://doi.org/10.1002/inf2.12226
67 Chen Y.Yao H.Kong F.Tian H.Meng G. Wang S.Mao X.Cui X.Hou X.Shi J., V2C MXene synergistically coupling FeNi LDH nanosheets for boosting oxygen evolution reaction, Appl. Catal. B 297, 120474 (2021)
68 Faraji M., Arianpouya N.. NiCoFe-layered double hydroxides/MXene/N-doped carbon nanotube composite as a high performance bifunctional catalyst for oxygen electrocatalytic reactions in metal−air batteries. J. Electroanal. Chem. (Lausanne), 2021, 901: 115797
https://doi.org/10.1016/j.jelechem.2021.115797
69 Lei H., Tan S., Ma L., Liu Y., Liang Y., S. Javed M., Wang Z., Zhu Z., Mai W.. Strongly coupled NiCo2O4 nanocrystal/MXene hybrid through in situ Ni/Co–F bonds for efficient wearable Zn–air batteries. ACS Appl. Mater. Interfaces, 2020, 12(40): 44639
https://doi.org/10.1021/acsami.0c11185
70 Lu Y., Fan D., Chen Z., Xiao W., Cao C., Yang X.. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. (Beijing), 2020, 65(6): 460
https://doi.org/10.1016/j.scib.2019.12.020
71 He L., Liu J., Liu Y., Cui B., Hu B., Wang M., Tian K., Song Y., Wu S., Zhang Z., Peng Z., Du M.. Titanium dioxide encapsulated carbon−nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction. Appl. Catal. B, 2019, 248: 366
https://doi.org/10.1016/j.apcatb.2019.02.033
72 Fasolino A., H. Los J., I. Katsnelson M.. Intrinsic ripples in graphene. Nat. Mater., 2007, 6(11): 858
https://doi.org/10.1038/nmat2011
73 A. Balandin A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., N. Lau C.. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902
https://doi.org/10.1021/nl0731872
74 Y. Jeon I., J. Ju M., Xu J., J. Choi H., M. Seo J., J. Kim M., T. Choi I., M. Kim H., C. Kim J., J. Lee J., K. Liu H., K. Kim H., Dou S., Dai L., B. Baek J.. Edge-fluorinated graphene nanoplatelets as high performance electrodes for dye-sensitized solar cells and lithium ion batteries. Adv. Funct. Mater., 2015, 25(8): 1170
https://doi.org/10.1002/adfm.201403836
75 Jia Y., Zhang L., Du A., Gao G., Chen J., Yan X., L. Brown C., Yao X.. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater., 2016, 28(43): 9532
https://doi.org/10.1002/adma.201602912
76 Zhang Y., P. Kong X., Lin X., Hu K., Zhao W., Xie G., Lin X., Liu X., Ito Y., J. Qiu H.. Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries. J. Energy Chem., 2022, 66: 466
https://doi.org/10.1016/j.jechem.2021.08.054
77 Wang C., Zhao H., Wang J., Zhao Z., Cheng M., Duan X., Zhang Q., Wang J., Wang J.. Atomic Fe hetero-layered coordination between g-C3N4 and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc–air batteries. J. Mater. Chem. A, 2019, 7(4): 1451
https://doi.org/10.1039/C8TA09722D
78 Wang C., Li Z., Wang L., Niu X., Wang S.. Facile synthesis of 3D Fe/N codoped mesoporous graphene as efficient bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. ACS Sustain. Chem. & Eng., 2019, 7(16): 13873
https://doi.org/10.1021/acssuschemeng.9b02052
79 Wang Z.Liao X.Lin Z.Huang F.Jiang Y. A. Owusu K.Xu L.Liu Z.Li J.Zhao Y. B. Cheng Y.Mai L., 3D nitrogen-doped graphene encapsulated metallic nickel-iron alloy nanoparticles for efficient bifunctional oxygen electrocatalysis, Chemistry 26(18), 3896 (2020)
80 Qin L., Wang L., Yang X., Ding R., Zheng Z., Chen X., Lv B.. Synergistic enhancement of oxygen reduction reaction with BC3 and graphitic-N in boron- and nitrogen-codoped porous graphene. J. Catal., 2018, 359: 242
https://doi.org/10.1016/j.jcat.2018.01.013
81 L. Tian L., Yang J., Y. Weng M., Tan R., X. Zheng J., B. Chen H., C. Zhuang Q., M. Dai L., Pan F.. Fast diffusion of O2 on nitrogen-doped graphene to enhance oxygen reduction and its application for high-rate Zn–air batteries. ACS Appl. Mater. Interfaces, 2017, 9(8): 7125
https://doi.org/10.1021/acsami.6b15235
82 Zhang J., Zhou H., Zhu J., Hu P., Hang C., Yang J., Peng T., Mu S., Huang Y.. Facile synthesis of defect-rich and S/N Co-doped graphene-like carbon nanosheets as an efficient electrocatalyst for primary and all-solid-state Zn–air batteries. ACS Appl. Mater. Interfaces, 2017, 9(29): 24545
https://doi.org/10.1021/acsami.7b04665
83 Wu S., Deng D., Zhang E., Li H., Xu L.. CoN nanoparticles anchored on ultra-thin N-doped graphene as the oxygen reduction electrocatalyst for highly stable zinc-air batteries. Carbon, 2022, 196: 347
https://doi.org/10.1016/j.carbon.2022.04.043
84 Zhang X., Yang Z., Lu Z., Wang W.. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation. Carbon, 2018, 130: 112
https://doi.org/10.1016/j.carbon.2017.12.121
85 Fu G., Yan X., Chen Y., Xu L., Sun D., M. Lee J., Tang Y.. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater., 2018, 30(5): 1704609
https://doi.org/10.1002/adma.201704609
86 Wei L., E. Karahan H., Zhai S., Liu H., Chen X., Zhou Z., Lei Y., Liu Z., Chen Y.. Amorphous bimetallic oxide–graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Adv. Mater., 2017, 29(38): 1701410
https://doi.org/10.1002/adma.201701410
87 Wang Z.Liao X.Lin Z.Huang F.Jiang Y. A. Owusu K.Xu L.Liu Z.Li J.Zhao Y. B. Cheng Y.Mai L., 3D nitrogen-doped graphene encapsulated metallic nickel–iron alloy nanoparticles for efficient bifunctional oxygen electrocatalysis, Chem. 26(18), 4044 (2020)
88 Liu Y., Bao J., Li Z., Zhang L., Zhang S., Wang L., Niu X., Sun P., Xu L.. Large-scale defect-rich iron/nitrogen co-doped graphene-based materials as the excellent bifunctional electrocatalyst for liquid and flexible all-solid-state zinc−air batteries. J. Colloid Interface Sci., 2022, 607: 1201
https://doi.org/10.1016/j.jcis.2021.09.070
89 Wang X., Zhan G., Wang Y., Zhang Y., Zhou J., Xu R., Gai H., Wang H., Jiang H., Huang M.. Engineering core–shell Co9S8/Co nanoparticles on reduced graphene oxide: Efficient bifunctional Mott–Schottky electrocatalysts in neutral rechargeable Zn–air batteries. J. Energy Chem., 2022, 68: 113
https://doi.org/10.1016/j.jechem.2021.09.014
90 Shu X., Yang M., Liu M., Pan W., Zhang J.. The regulation of coordination structure between cobalt and nitrogen on graphene for efficient bifunctional electrocatalysis in Zn−air batteries. J. Energy Chem., 2022, 68: 213
https://doi.org/10.1016/j.jechem.2021.11.018
91 Xiang Y., Xu C., Fu T., Tang Y., Li G., Xiong Z., Guo C., Si Y.. Enhanced bifunctional catalytic performance of nitrogen-doped carbon composite to oxygen reduction and evolution reactions with the regulation of graphene for rechargeable Zn−air batteries. Appl. Surf. Sci., 2022, 575: 151730
https://doi.org/10.1016/j.apsusc.2021.151730
92 Wang T., Feng J., Liu Q., Han X., Wu D.. Facile synthesis of amino acids-derived Fe/N-codoped reduced graphene oxide for enhanced ORR electrocatalyst. J. Electroanal. Chem. (Lausanne), 2022, 915: 116326
https://doi.org/10.1016/j.jelechem.2022.116326
93 Tian Y., Xu L., Li M., Yuan D., Liu X., Qian J., Dou Y., Qiu J., Zhang S.. Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn–air batteries. Nano-Micro Lett., 2021, 13(1): 3
https://doi.org/10.1007/s40820-020-00526-x
94 Wang A., Zhao C., Yu M., Wang W.. Trifunctional Co nanoparticle confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime. Appl. Catal. B, 2021, 281: 119514
https://doi.org/10.1016/j.apcatb.2020.119514
95 Wang Y., Xu N., He R., Peng L., Cai D., Qiao J.. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn−air battery. Appl. Catal. B, 2021, 285: 119811
https://doi.org/10.1016/j.apcatb.2020.119811
96 Zhao X.Shao L.Wang Z.Chen H.Yang H. Zeng L., In situ atomically dispersed Fe doped metal-organic framework on reduced graphene oxide as bifunctional electrocatalyst for Zn–air batteries, J. Mater. Chem. C 9(34), 11252 (2021)
97 Zhu Z., Zhang J., Peng X., Liu Y., Cen T., Ye Z., Yuan D.. Co3O4–NiCo2O4 hybrid nanoparticles anchored on N-doped reduced graphene oxide nanosheets as an efficient catalyst for Zn–air batteries. Energy Fuels, 2021, 35(5): 4550
https://doi.org/10.1021/acs.energyfuels.0c04079
98 Chen X.Chen D.Li G.Gong C.Chen Y. Zhang Q.Sui J.Dong H.Yu J.Yu L. Dong L., A hierarchical architecture of Fe/Co/Ni-doped carbon nanotubes/nanospheres grafted on graphene as advanced bifunctional electrocatalyst for Zn−air batteries, J. Alloys Comp. 873, 159833 (2021)
99 Zhu Z., Xu Q., Ni Z., Luo K., Liu Y., Yuan D.. CoNi nanoalloys @ N-doped graphene encapsulated in n-doped carbon nanotubes for rechargeable Zn–air batteries. ACS Sustain. Chem. & Eng., 2021, 9(40): 13491
https://doi.org/10.1021/acssuschemeng.1c04259
100 Wang Q., O’Hare D.. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev., 2012, 112(7): 4124
https://doi.org/10.1021/cr200434v
101 Li S., Ma R., Hu J., Li Z., Liu L., Wang X., Lu Y., E. Sterbinsky G., Liu S., Zheng L., Liu J., Liu D., Wang J.. Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun., 2022, 13(1): 2916
https://doi.org/10.1038/s41467-022-30670-4
102 Zhao Y., Zhang X., Jia X., I. N. Waterhouse G., Shi R., Zhang X., Zhan F., Tao Y., Z. Wu L., H. Tung C., O’Hare D., Zhang T.. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater., 2018, 8(18): 1703585
https://doi.org/10.1002/aenm.201703585
103 Chen G., Wan H., Ma W., Zhang N., Cao Y., Liu X., Wang J., Ma R.. Layered metal hydroxides and their derivatives: Controllable synthesis, chemical exfoliation, and electrocatalytic applications. Adv. Energy Mater., 2020, 10(11): 1902535
https://doi.org/10.1002/aenm.201902535
104 Yan K., Wu G., Jin W.. Recent advances in the synthesis of layered, double-hydroxide-based materials and their applications in hydrogen and oxygen evolution. Energy Technol. (Weinheim), 2016, 4(3): 354
https://doi.org/10.1002/ente.201500343
105 Dresp S., Luo F., Schmack R., Kühl S., Gliech M., Strasser P.. An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ. Sci., 2016, 9(6): 2020
https://doi.org/10.1039/C6EE01046F
106 Tang C., S. Wang H., F. Wang H., Zhang Q., L. Tian G., Q. Nie J., Wei F.. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater., 2015, 27(30): 4516
https://doi.org/10.1002/adma.201501901
107 Gong M., Li Y., Wang H., Liang Y., Z. Wu J., Zhou J., Wang J., Regier T., Wei F., Dai H.. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc., 2013, 135(23): 8452
https://doi.org/10.1021/ja4027715
108 Salmanion M., M. Najafpour M.. Dendrimer-Ni-based material: Toward an efficient Ni–Fe layered double hydroxide for oxygen-evolution reaction. Inorg. Chem., 2021, 60(8): 6073
https://doi.org/10.1021/acs.inorgchem.1c00561
109 Zhang J., Yu L., Chen Y., F. Lu X., Gao S., W. D. Lou X.. Designed formation of double-shelled Ni–Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv. Mater., 2020, 32(16): 1906432
https://doi.org/10.1002/adma.201906432
110 R. Park K., Jeon J., Choi H., Lee J., H. Lim D., Oh N., Han H., Ahn C., Kim B., Mhin S.. NiFe layered double hydroxide electrocatalysts for an efficient oxygen evolution reaction. ACS Appl. Energy Mater., 2022, 5(7): 8592
https://doi.org/10.1021/acsaem.2c01115
111 N. Hausmann J., W. Menezes P.. Effect of surface-adsorbed and intercalated (Oxy)anions on the oxygen evolution reaction. Angew. Chem. Int. Ed., 2022, 61(38): e202207279
https://doi.org/10.1002/anie.202207279
112 Li S.Li Z. Ma R.Gao C. Liu L.Hu L.Zhu J.Sun T.Tang Y. Liu D.Wang J., A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction, Angew. Chem. Int. Ed. 60, 3773 (2021)
113 Wei C., Feng Z., G. Scherer G., Barber J., Shao-Horn Y., J. Xu Z.. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater., 2017, 29(23): 1606800
https://doi.org/10.1002/adma.201606800
114 Liu S., Wan R., Lin Z., Liu Z., Liu Y., Tian Y., D. Qin D., Tang Z.. Probing the Co role in promoting the OER and Zn–air battery performance of NiFe-LDH: A combined experimental and theoretical study. J. Mater. Chem. A, 2022, 10(10): 5244
https://doi.org/10.1039/D1TA11055A
115 Yan L., Xu Z., Liu X., Mahmood S., Shen J., Ning J., Li S., Zhong Y., Hu Y.. Integrating trifunctional Co@NC-CNTs@NiFe-LDH electrocatalysts with arrays of porous triangle carbon plates for high-power-density rechargeable Zn−air batteries and self-powered water splitting. Chem. Eng. J., 2022, 446: 137049
https://doi.org/10.1016/j.cej.2022.137049
116 Feng X., Jiao Q., Chen W., Dang Y., Dai Z., L. Suib S., Zhang J., Zhao Y., Li H., Feng C.. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B, 2021, 286: 119869
https://doi.org/10.1016/j.apcatb.2020.119869
117 Kong Z., Chen J., Wang X., Long X., She X., Li D., Yang D.. Cation vacancy driven efficient CoFe-LDH-based electrocatalysts for water splitting and Zn–air batteries. Adv. Mater., 2021, 2(24): 7932
https://doi.org/10.1039/D1MA00836F
118 S. Hall D., J. Lockwood D., Bock C., R. MacDougall B.. Nickel hydroxides and related materials: A review of their structures, synthesis and properties. Proc. Math. Phys. Eng. Sci., 2015, 471: 20140792
https://doi.org/10.1098/rspa.2014.0792
119 Wang T., Wu J., Liu Y., Cui X., Ding P., Deng J., Zha C., Coy E., Li Y.. Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc−air batteries. Energy Storage Mater., 2019, 16: 24
https://doi.org/10.1016/j.ensm.2018.04.020
120 Wu D., Hu X., Yang Z., Yang T., Wen J., Lu G., Zhao Q., Li Z., Jiang X., Xu C.. NiFe LDH anchoring on Fe/N-doped carbon nanofibers as a bifunctional electrocatalyst for rechargeable zinc–air batteries. Ind. Eng. Chem. Res., 2022, 61(22): 7523
https://doi.org/10.1021/acs.iecr.1c04694
121 Zhou D., Cai Z., Jia Y., Xiong X., Xie Q., Wang S., Zhang Y., Liu W., Duan H., Sun X.. Activating basal plane in NiFe layered double hydroxide by Mn2+ doping for efficient and durable oxygen evolution reaction. Nanoscale Horiz., 2018, 3(5): 532
https://doi.org/10.1039/C8NH00121A
122 Ge J., Y. Zheng J., Zhang J., Jiang S., Zhang L., Wan H., Wang L., Ma W., Zhou Z., Ma R.. Controllable atomic defect engineering in layered NixFe1−x(OH)2 nanosheets for electrochemical overall water splitting. J. Mater. Chem. A, 2021, 9(25): 14432
https://doi.org/10.1039/D1TA02188E
123 Thakur N., Kumar M., Mandal D., C. Nagaiah T.. Nickel iron phosphide/phosphate as an oxygen bifunctional electrocatalyst for high-power-density rechargeable Zn–air batteries. ACS Appl. Mater. Interfaces, 2021, 13(44): 52487
https://doi.org/10.1021/acsami.1c12053
124 Zhang M.Zhang J.Ran S.Qiu L.Sun W. Yu Y.Chen J. Zhu Z., A robust bifunctional catalyst for rechargeable Zn−air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix, Nano Res. 14(4), 1175 (2021)
125 Wang Q., Shang L., Shi R., Zhang X., Zhao Y., I. N. Waterhouse G., Z. Wu L., H. Tung C., Zhang T.. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc−air batteries. Adv. Energy Mater., 2017, 7(21): 1700467
https://doi.org/10.1002/aenm.201700467
126 Lin Y., Wang H., K. Peng C., Bu L., Tian K., Zhao Y., Zhao J., G. Lin Y., M. Lee J., Gao L.. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small, 2020, 16(38): 2002426
https://doi.org/10.1002/smll.202002426
127 Wang W., Liu Y., Li J., Luo J., Fu L., Chen S.. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J. Mater. Chem. A, 2018, 6(29): 14299
https://doi.org/10.1039/C8TA05295F
128 Cai X., Jiang T., Wu M.. Confined growth of NiFe LDH with hierarchical structures on copper nanowires for long-term stable rechargeable Zn−air batteries. Appl. Surf. Sci., 2022, 577: 151911
https://doi.org/10.1016/j.apsusc.2021.151911
129 X. Zhao C.N. Liu J.Wang J.Ren D.Yu J. Chen X.Q. Li B.Zhang Q., A ΔE = 0.63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc–air batteries, Adv. Mater. 33(15), 2008606 (2021)
130 Wan L., Zhao Z., Chen X., Liu P., Wang P., Xu Z., Lin Y., Wang B.. Controlled synthesis of bifunctional NiCo2O4 @FeNi LDH core–shell nanoarray air electrodes for rechargeable zinc–air batteries. ACS Sustain. Chem. & Eng., 2020, 8(30): 11079
https://doi.org/10.1021/acssuschemeng.0c00442
131 Meza E., E. Diaz R., W. Li C.. Solution-phase activation and functionalization of colloidal WS2 nanosheets with ni single atoms. ACS Nano, 2020, 14(2): 2238
https://doi.org/10.1021/acsnano.9b09245
132 Tian S., Tang Q.. Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping. J. Mater. Chem. C, 2021, 9(18): 6040
https://doi.org/10.1039/D1TC00668A
133 Qin Z., Wang Z., Zhao J.. Computational screening of single-atom catalysts supported by VS2 monolayers for electrocatalytic oxygen reduction/evolution reactions. Nanoscale, 2022, 14(18): 6902
https://doi.org/10.1039/D2NR01671K
134 Qi Q., Hu J., Zhang Y., Li W., Huang B., Zhang C.. Two-dimensional metal–organic framework-based electrocatalysts for oxygen evolution and oxygen reduction reactions. Adv. Energy Sustain. Res., 2021, 2(3): 2000067
https://doi.org/10.1002/aesr.202000067
135 Zhao S., Wang Y., Dong J., T. He C., Yin H., An P., Zhao K., Zhang X., Gao C., Zhang L., Lv J., Wang J., Zhang J., M. Khattak A., A. Khan N., Wei Z., Zhang J., Liu S., Zhao H., Tang Z.. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy, 2016, 1(12): 16184
https://doi.org/10.1038/nenergy.2016.184
136 Huang J., Li Y., K. Huang R., T. He C., Gong L., Hu Q., Wang L., T. Xu Y., Y. Tian X., Y. Liu S., M. Ye Z., Wang F., D. Zhou D., X. Zhang W., P. Zhang J.. Electrochemical exfoliation of pillared-layer metal–organic framework to boost the oxygen evolution reaction. Angew. Chem. Int. Ed., 2018, 57(17): 4632
https://doi.org/10.1002/anie.201801029
137 Li H., Zhang M., Zhou W., Duan J., Jin W.. Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery. Chem. Eng. J., 2021, 421: 129719
https://doi.org/10.1016/j.cej.2021.129719
138 Jing H., Zhu P., Zheng X., Zhang Z., Wang D., Li Y.. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., 2022, 1(1): 100013
https://doi.org/10.1016/j.apmate.2021.10.004
139 Wang R., R. Parent L., Gopalan S., Zhong Y.. Experimental and computational investigations on the SO2 poisoning of (La0.8Sr0.2)0.95MnO3 cathode materials. Adv. Powder Mater., 2023, 2(1): 100062
https://doi.org/10.1016/j.apmate.2022.100062
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed