Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (3): 33305   https://doi.org/10.1007/s11467-022-1236-4
  本期目录
Optimal charge inhomogeneity for the d+id-wave superconductivity in the intercalated graphite CaC6
Shuhui Yang, Tao Ying()
School of Physics, Harbin Institute of Technology, Harbin 150001, China
 全文: PDF(3960 KB)   HTML
Abstract

The coexistence of superconductivity and charge inhomogeneity was observed in many cuprate superconductors. The relationship between those two is still controversial. Similarly, in the graphene sheets of the intercalated graphitic superconductor CaC6, the charge inhomogeneity was also observed. We simulate such a system by constructing the Hubbard model on the honeycomb lattice with charge inhomogeneity imposed by force. Utilizing the finite-temperature determinant quantum Monte Carlo algorithm, we examine the relationship between the superconducting pairing and the charge inhomogeneity. An optimal charge inhomogeneity for the d+id-wave pairing is found. While for other artificial charge inhomogeneities, the d+id-wave pairing is monotonically suppressed. The possible π-phase shift induced by charge inhomogeneity is also examined.

Key wordsintercalated graphitic superconductor    charge inhomogeneity    Hubbard model    d+id-wave pairing
收稿日期: 2022-06-25      出版日期: 2022-12-29
Corresponding Author(s): Tao Ying   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(3): 33305.
Shuhui Yang, Tao Ying. Optimal charge inhomogeneity for the d+id-wave superconductivity in the intercalated graphite CaC6. Front. Phys. , 2023, 18(3): 33305.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1236-4
https://academic.hep.com.cn/fop/CN/Y2023/V18/I3/33305
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Dagotto E. . Complexity in strongly correlated electronic systems. Science, 2005, 309(5732): 257
https://doi.org/10.1126/science.1107559
2 Tranquada J. , Sternlieb B. , Axe J. , Nakamura Y. , Uchida S. . Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature, 1995, 375(6532): 561
https://doi.org/10.1038/375561a0
3 M. Tranquada J. , D. Axe J. , Ichikawa N. , R. Moodenbaugh A. , Nakamura Y. , Uchida S. . Coexistence of, and competition between, superconductivity and charge-stripe order in La1.6−xNd0.4SrxCuO4. Phys. Rev. Lett., 1997, 78(2): 338
https://doi.org/10.1103/PhysRevLett.78.338
4 Wu T. , Mayaffre H. , Krämer S. , Horvatić M. , Berthier C. , Hardy W. , Liang R. , Bonn D. , H. Julien M. . Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature, 2011, 477(7363): 191
https://doi.org/10.1038/nature10345
5 Ghiringhelli G. , Le Tacon M. , Minola M. , Blanco Canosa S. , Mazzoli C. , Brookes N. , De Luca G. , Frano A. , Hawthorn D. , He F. , Loew T. , M. Sala M. , C. Peets D. , Salluzzo M. , Schierle E. , Sutarto R. , A. Sawatzky G. , Weschke E. , Keimer B. , Braicovich L. . Long-range incommensurate charge fluctuations in (Y, Nd) Ba2Cu3O6+x. Science, 2012, 337(6096): 821
https://doi.org/10.1126/science.1223532
6 J. Achkar A. , Sutarto R. , Mao X. , He F. , Frano A. , Blanco-Canosa S. , Le Tacon M. , Ghiringhelli G. , Braicovich L. , Minola M. , Moretti Sala M. , Mazzoli C. , Liang R. , A. Bonn D. , N. Hardy W. , Keimer B. , A. Sawatzky G. , G. Hawthorn D. . Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O6+δ superconductors identified by resonant elastic X-ray scattering. Phys. Rev. Lett., 2012, 109(16): 167001
https://doi.org/10.1103/PhysRevLett.109.167001
7 Chang J. , Blackburn E. , Holmes A. , B. Christensen N. , Larsen J. , Mesot J. , Liang R. , Bonn D. , Hardy W. , Watenphul A. , Zimmermann M. , M. Forgan E. , M. Hayden S. . Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys., 2012, 8(12): 871
https://doi.org/10.1038/nphys2456
8 Li Q. , Hucker M. , D. Gu G. , M. Tsvelik A. , M. Tranquada J. . Two-dimensional superconducting fluctuations in stripe-ordered La1.875Ba0.125CuO4. Phys. Rev. Lett., 2007, 99(6): 067001
https://doi.org/10.1103/PhysRevLett.99.067001
9 Berg E. , Fradkin E. , A. Kim E. , A. Kivelson S. , Oganesyan V. , M. Tranquada J. , C. Zhang S. . Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett., 2007, 99(12): 127003
https://doi.org/10.1103/PhysRevLett.99.127003
10 Valla T. , Fedorov A. , Lee J. , Davis J. , Gu G. . The ground state of the pseudogap in cuprate superconductors. Science, 2006, 314(5807): 1914
https://doi.org/10.1126/science.1134742
11 M. Tranquada J. , D. Gu G. , Hücker M. , Jie Q. , J. Kang H. , Klingeler R. , Li Q. , Tristan N. , S. Wen J. , Y. Xu G. , J. Xu Z. , Zhou J. , V. Zimmermann M. . Evidence for unusual superconducting correlations coexisting with stripe order in La1.875Ba0.125CuO4. Phys. Rev. B, 2008, 78(17): 174529
https://doi.org/10.1103/PhysRevB.78.174529
12 Arrigoni E.A. Kivelson S., Optimal inhomogeneity for superconductivity, Phys. Rev. B 68, 180503(R) (2003)
13 Martin I.Podolsky D.A. Kivelson S., Enhancement of superconductivity by local inhomogeneities, Phys. Rev. B 72, 060502(R) (2005)
14 Aryanpour K. , R. Dagotto E. , Mayr M. , Paiva T. , E. Pickett W. , T. Scalettar R. . Effect of inhomogeneity on s-wave superconductivity in the attractive Hubbard model. Phys. Rev. B, 2006, 73(10): 104518
https://doi.org/10.1103/PhysRevB.73.104518
15 Berg E. , Fradkin E. , A. Kivelson S. . Theory of the striped superconductor. Phys. Rev. B, 2009, 79(6): 064515
https://doi.org/10.1103/PhysRevB.79.064515
16 A. Maier T. , Alvarez G. , Summers M. , C. Schulthess T. . Dynamic cluster quantum Monte Carlo simulations of a two-dimensional Hubbard model with stripelike charge-density-wave modulations: Interplay between inhomogeneities and the superconducting state. Phys. Rev. Lett., 2010, 104(24): 247001
https://doi.org/10.1103/PhysRevLett.104.247001
17 Mondaini R. , Ying T. , Paiva T. , T. Scalettar R. . Determinant quantum Monte Carlo study of the enhancement of d-wave pairing by charge inhomogeneity. Phys. Rev. B, 2012, 86(18): 184506
https://doi.org/10.1103/PhysRevB.86.184506
18 X. Zheng B. , M. Chung C. , Corboz P. , Ehlers G. , P. Qin M. , M. Noack R. , Shi H. , R. White S. , Zhang S. , K. L. Chan G. . Stripe order in the underdoped region of the two-dimensional Hubbard model. Science, 2017, 358(6367): 1155
https://doi.org/10.1126/science.aam7127
19 Ponsioen B. , S. Chung S. , Corboz P. . Period 4 stripe in the extended two-dimensional Hubbard model. Phys. Rev. B, 2019, 100(19): 195141
https://doi.org/10.1103/PhysRevB.100.195141
20 Fradkin E. , A. Kivelson S. . High-temperature superconductivity: Ineluctable complexity. Nat. Phys., 2012, 8(12): 864
https://doi.org/10.1038/nphys2498
21 C. Rahnejat K. , A. Howard C. , E. Shuttleworth N. , R. Schofield S. , Iwaya K. , F. Hirjibehedin C. , Renner C. , Aeppli G. , Ellerby M. . Charge density waves in the graphene sheets of the superconductor CaC6. Nat. Commun., 2011, 2(1): 558
https://doi.org/10.1038/ncomms1574
22 Jiang Y. , Lai X. , Watanabe K. , Taniguchi T. , Haule K. , Mao J. , Andrei E. . Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature, 2019, 573(7772): 91
https://doi.org/10.1038/s41586-019-1460-4
23 Ma T.Huang Z.Hu F.Q. Lin H., Pairing in graphene: A quantum Monte Carlo study, Phys. Rev. B 84, 121410(R) (2011)
24 Ying T. , Wessel S. . Pairing and chiral spin density wave instabilities on the honeycomb lattice: A comparative quantum Monte Carlo study. Phys. Rev. B, 2018, 97(7): 075127
https://doi.org/10.1103/PhysRevB.97.075127
25 Calandra M. , Mauri F. . Theoretical explanation of superconductivity in C6Ca. Phys. Rev. Lett., 2005, 95(23): 237002
https://doi.org/10.1103/PhysRevLett.95.237002
26 Valla T. , Camacho J. , H. Pan Z. , V. Fedorov A. , C. Walters A. , A. Howard C. , Ellerby M. . Anisotropic electron−phonon coupling and dynamical nesting on the graphene sheets in superconducting CaC6 using angleresolved photoemission spectroscopy. Phys. Rev. Lett., 2009, 102(10): 107007
https://doi.org/10.1103/PhysRevLett.102.107007
27 O. Wehling T. , Sasioglu E. , Friedrich C. , I. Lichtenstein A. , I. Katsnelson M. , Blugel S. . Strength of effective Coulomb interactions in graphene and graphite. Phys. Rev. Lett., 2011, 106(23): 236805
https://doi.org/10.1103/PhysRevLett.106.236805
28 Schüler M. , Rosner M. , O. Wehling T. , I. Lichtenstein A. , I. Katsnelson M. . Optimal Hubbard models for materials with nonlocal Coulomb interactions: Graphene, silicene, and benzene. Phys. Rev. Lett., 2013, 111(3): 036601
https://doi.org/10.1103/PhysRevLett.111.036601
29 Blankenbecler R. , J. Scalapino D. , L. Sugar R. . Monte Carlo calculations of coupled Boson-fermion systems (I). Phys. Rev. D, 1981, 24(8): 2278
https://doi.org/10.1103/PhysRevD.24.2278
30 R. White S. , J. Scalapino D. , L. Sugar R. , Y. Loh E. , E. Gubernatis J. , T. Scalettar R. . Numerical study of the two-dimensional Hubbard model. Phys. Rev. B, 1989, 40(1): 506
https://doi.org/10.1103/PhysRevB.40.506
31 E. Hirsch J. . Two-dimensional Hubbard model: Numerical simulation study. Phys. Rev. B, 1985, 31(7): 4403
https://doi.org/10.1103/PhysRevB.31.4403
32 R. White S. , J. Scalapino D. , L. Sugar R. , E. Bickers N. , T. Scalettar R. . Attractive and repulsive pairing interaction vertices for the two-dimensional Hubbard model. Phys. Rev. B, 1989, 39(1): 839
https://doi.org/10.1103/PhysRevB.39.839
33 Y. Loh E. , E. Gubernatis J. , T. Scalettar R. , R. White S. , J. Scalapino D. , L. Sugar R. . Sign problem in the numerical simulation of many-electron systems. Phys. Rev. B, 1990, 41(13): 9301
https://doi.org/10.1103/PhysRevB.41.9301
34 Troyer M. , J. Wiese U. . Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett., 2005, 94(17): 170201
https://doi.org/10.1103/PhysRevLett.94.170201
35 W. Huang E. , B. Mendl C. , Liu S. , Johnston S. , C. Jiang H. , Moritz B. , P. Devereaux T. . Numerical evidence of fluctuating stripes in the normal state of high-Tc cuprate superconductors. Science, 2017, 358(6367): 1161
https://doi.org/10.1126/science.aak9546
36 C. Jiang H. , A. Kivelson S. . Stripe order enhanced superconductivity in the Hubbard model. Proc. Natl. Acad. Sci. USA, 2022, 119(1): e2109406119
https://doi.org/10.1073/pnas.2109406119
37 Qin M. , Schafer T. , Andergassen S. , Corboz P. , Gull E. . The Hubbard model: A computational perspective. Annu. Rev. Condens. Matter Phys., 2022, 13(1): 275
https://doi.org/10.1146/annurev-conmatphys-090921-033948
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed