Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials.
E. Moore J., Balents L.. Topological invariants of time-reversal-invariant band structures.Phys. Rev. B, 2007, 75(12): 121306 https://doi.org/10.1103/PhysRevB.75.121306
5
J. Zhang H., X. Liu C., L. Qi X., Dai X., Fang Z., C. Zhang S., Topological insulators in Bi2Se3. Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface.Nat. Phys., 2009, 5(6): 438 https://doi.org/10.1038/nphys1270
6
A. Bernevig B., L. Hughes T., C. Zhang S.. Quantum spin Hall effect and topological phase transition in HgTe quantum wells.Science, 2006, 314(5806): 1757 https://doi.org/10.1126/science.1133734
7
König M., Wiedmann S., Brune C., Roth A., Buhmann H., W. Molenkamp L., L. Qi X., C. Zhang S.. Quantum spin hall insulator state in HgTe quantum wells.Science, 2007, 318(5851): 766 https://doi.org/10.1126/science.1148047
8
Hsieh D., Qian D., Wray L., Xia Y., S. Hor Y., J. Cava R., Z. Hasan M.. A topological Dirac insulator in a quantum spin Hall phase.Nature, 2008, 452(7190): 970 https://doi.org/10.1038/nature06843
9
L. Chen Y., G. Analytis J., H. Chu J., K. Liu Z., K. Mo S., L. Qi X., J. Zhang H., H. Lu D., Dai X., Fang Z., C. Zhang S., R. Fisher I., Hussain Z., X. Shen Z., realization of a three-dimensional topological insulator Experimental. Bi2Te3.Science, 2009, 325(5937): 178 https://doi.org/10.1126/science.1173034
10
Hsieh D., Xia Y., Qian D., Wray L., H. Dil J., Meier F., Osterwalder J., Patthey L., G. Checkelsky J., P. Ong N., V. Fedorov A., Lin H., Bansil A., Grauer D., S. Hor Y., J. Cava R., Z. Hasan M.. A tunable topological insulator in the spin helical Dirac transport regime.Nature, 2009, 460(7259): 1101 https://doi.org/10.1038/nature08234
11
Xia Y., Qian D., Hsieh D., Wray L., Pal A., Lin H., Bansil A., Grauer D., S. Hor Y., J. Cava R., Z. Hasan M.. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface.Nat. Phys., 2009, 5(6): 398 https://doi.org/10.1038/nphys1274
12
Valla T., H. Pan Z., Gardner D., S. Lee Y., Chu S.. Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator.Phys. Rev. Lett., 2012, 108(11): 117601 https://doi.org/10.1103/PhysRevLett.108.117601
13
Chen C., He S., Weng H., Zhang W., Zhao L., Liu H., Jia X., Mou D., Liu S., He J., Peng Y., Feng Y., Xie Z., Liu G., Dong X., Zhang J., Wang X., Peng Q., Wang Z., Zhang S., Yang F., Chen C., Xu Z., Dai X., Fang Z., J. Zhou X.. Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment.Proc. Natl. Acad. Sci. USA, 2012, 109(10): 3694 https://doi.org/10.1073/pnas.1115555109
14
A. Wray L., Y. Xu S., Xia Y., Hsieh D., V. Fedorov A., S. Hor Y., J. Cava R., Bansil A., Lin H., Z. Hasan M.. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations.Nat. Phys., 2011, 7: 32 https://doi.org/10.1038/nphys1838
15
Z. Chang C., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., L. Wang L., Q. Ji Z., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., C. Zhang S., He K., Wang Y., Lu L., C. Ma X., K. Xue Q.. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator.Science, 2013, 340(6129): 167 https://doi.org/10.1126/science.1234414
16
Yu R., Zhang W., J. Zhang H., C. Zhang S., Dai X., Fang Z.. Quantized anomalous Hall effect in magnetic topological insulators.Science, 2010, 329(5987): 61 https://doi.org/10.1126/science.1187485
17
P. Armitage N., J. Mele E., Vishwanath A.. Weyl and Dirac semimetals in three-dimensional solids.Rev. Mod. Phys., 2018, 90(1): 015001 https://doi.org/10.1103/RevModPhys.90.015001
G. Wan X., M. Turner A., Vishwanath A., Y. Savrasov S.. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates.Phys. Rev. B, 2011, 83(20): 205101 https://doi.org/10.1103/PhysRevB.83.205101
21
Wang Z., Sun Y., Q. Chen X., Franchini C., Xu G., Weng H., Dai X., Fang Z., Dirac semimetal,topological phase transitions in A3Bi (A=Na.Rb).Phys. Rev. B, 2012, 85(19): 195320 https://doi.org/10.1103/PhysRevB.85.195320
22
M. Young S., Zaheer S., C. Y. Teo J., L. Kane C., J. Mele E., M. Rappe A.. Dirac semimetal in three dimensions.Phys. Rev. Lett., 2012, 108(14): 140405 https://doi.org/10.1103/PhysRevLett.108.140405
23
J. Wang Z., M. Weng H., S. Wu Q., Dai X., Fang Z.. Three-dimensional Dirac semimetal and quantum transport in Cd3As2.Phys. Rev. B, 2013, 88(12): 125427 https://doi.org/10.1103/PhysRevB.88.125427
24
Ning W., Mao Z.. Recent advancements in the study of intrinsic magnetic topological insulators and magnetic Weyl semimetals.APL Mater., 2020, 8(9): 090701 https://doi.org/10.1063/5.0015328
25
Z. Hasan M., Chang G., Belopolski I., Bian G., Y. Xu S., X. Yin J.. Dirac and high-fold chiral fermions in topological quantum matter.Nat. Rev. Mater., 2021, 6(9): 784 https://doi.org/10.1038/s41578-021-00301-3
26
A. Bernevig B., Felser C., Beidenkopf H.. Progress and prospects in magnetic topological materials.Nature, 2022, 603(7899): 41 https://doi.org/10.1038/s41586-021-04105-x
27
Tang F., C. Po H., Vishwanath A., Wan X.. Comprehensive search for topological materials using symmetry indicators.Nature, 2019, 566(7745): 486 https://doi.org/10.1038/s41586-019-0937-5
28
G. Vergniory M., Elcoro L., Felser C., Regnault N., A. Bernevig B., Wang Z.. A complete catalogue of high-quality topological materials.Nature, 2019, 566(7745): 480 https://doi.org/10.1038/s41586-019-0954-4
29
Zhang T., Jiang Y., Song Z., Huang H., He Y., Fang Z., Weng H., Fang C.. Catalogue of topological electronic materials.Nature, 2019, 566(7745): 475 https://doi.org/10.1038/s41586-019-0944-6
30
Liu C., R. Liu X.. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators.Acta Phys. Sin., 2019, 68(22): 227901 https://doi.org/10.7498/aps.68.20191450
Wang Y., On the topological surface states of the intrinsic magnetic topological insulator Mn−Bi−Te family, arXiv: 2211.04017 (2022)
34
Zhao Y., Liu Q.. Routes to realize the axion-insulator phase in MnBi2Te4(Bi2Te3)n family.Appl. Phys. Lett., 2021, 119(6): 060502 https://doi.org/10.1063/5.0059447
Li Y., Xu Y.. First-principles discovery of novel quantum physics and materials: From theory to experiment.Comput. Mater. Sci., 2021, 190: 110262 https://doi.org/10.1016/j.commatsci.2020.110262
37
Y. Chen C., Surface state energy gap of magnetic origin and “semi magnetic topological insulator”, Physics 50, 267 (2021) (in Chinese)
H. Zhan G., Q Wang H., J. Zhang H.. Antiferromagnetic topological insulators and axion insulators — MnBi2Te4 family magnetic systems.Physics, 2020, 49(12): 817 https://doi.org/10.7693/wl20201203(2020
40
Kida T., A. Fenner L., A. Dee A., Terasaki I., Hagiwara M., S. Wills A.. The giant anomalous Hall effect in the ferromagnet Fe3Sn2 — a frustrated Kagomé metal.J. Phys.: Condens. Matter, 2011, 23(11): 112205 https://doi.org/10.1088/0953-8984/23/11/112205
41
D. M. Haldane F.. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”.Phys. Rev. Lett., 1988, 61(18): 2015 https://doi.org/10.1103/PhysRevLett.61.2015
Shiozaki K., Sato M., Gomi K.. Z2 topology in nonsymmorphic crystalline insulators: Möbius twist in surface states.Phys. Rev. B, 2015, 91(15): 155120 https://doi.org/10.1103/PhysRevB.91.155120
Liu C., Wang Y., Li H., Wu Y., Li Y., Li J., He K., Xu Y., Zhang J., Wang Y.. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator.Nat. Mater., 2020, 19(5): 522 https://doi.org/10.1038/s41563-019-0573-3
46
Z. Chang C., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., L. Wang L., Q. Ji Z., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., C. Zhang S., He K., Wang Y., Lu L., C. Ma X., K. Xue Q.. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator.Science, 2013, 340(6129): 167 https://doi.org/10.1126/science.1234414
47
Wu L., Salehi M., Koirala N., Moon J., Oh S., P. Armitage N.. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator.Science, 2016, 354(6316): 1124 https://doi.org/10.1126/science.aaf5541
48
Liu E., Sun Y., Kumar N., Muechler L., Sun A., Jiao L., Y. Yang S., Liu D., Liang A., Xu Q., Kroder J., Süß V., Borrmann H., Shekhar C., Wang Z., Xi C., Wang W., Schnelle W., Wirth S., Chen Y., T. B. Goennenwein S., Felser C.. Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal.Nat. Phys., 2018, 14(11): 1125 https://doi.org/10.1038/s41567-018-0234-5
49
L. Zhang C., Y. Xu S., Belopolski I., Yuan Z., Lin Z., Tong B., Bian G., Alidoust N., C. Lee C., M. Huang S., R. Chang T., Chang G., H. Hsu C., T. Jeng H., Neupane M., S. Sanchez D., Zheng H., Wang J., Lin H., Zhang C., Z. Lu H., Q. Shen S., Neupert T., Zahid Hasan M., Jia S.. Signatures of the Adler−Bell−Jackiw chiral anomaly in a Weyl fermion semimetal.Nat. Commun., 2016, 7(1): 10735 https://doi.org/10.1038/ncomms10735
50
N. Guin S., Vir P., Zhang Y., Kumar N., J. Watzman S., Fu C., Liu E., Manna K., Schnelle W., Gooth J., Shekhar C., Sun Y., Felser C.. Zero-field Nernst effect in a ferromagnetic Kagomé-lattice Weyl-semimetal Co3Sn2S2.Adv. Mater., 2019, 31(25): 1806622 https://doi.org/10.1002/adma.201806622
51
K. Liu E., Zhang S.. Topologically enhanced zero-field transverse Nernst thermoelectric effect in magnetic topological semimetals.Sci. China Phys. Mech. &Astron., 2019, 49(12): 127001 https://doi.org/10.1360/SSPMA-2019-0367
M. Otrokov M., V. Menshchikova T., G. Vergniory M., P. Rusinov I., Yu Vyazovskaya A., M. Koroteev Y., Bihlmayer G., Ernst A., M. Echenique P., Arnau A., V. Chulkov E.. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects.2D Mater., 2017, 4: 025082 https://doi.org/10.1088/2053-1583/aa6bec
54
M. Otrokov M., V. Menshchikova T., P. Rusinov I., G. Vergniory M., M. Kuznetsov V., V. Chulkov E.. Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators.JETP Lett., 2017, 105(5): 297 https://doi.org/10.1134/S0021364017050113
55
Gong Y., Guo J., Li J., Zhu K., Liao M., Liu X., Zhang Q., Gu L., Tang L., Feng X., Zhang D., Li W., Song C., Wang L., Yu P., Chen X., Wang Y., Yao H., Duan W., Xu Y., C. Zhang S., Ma X., K. Xue Q., He K.. Experimental realization of an intrinsic magnetic topological insulator.Chin. Phys. Lett., 2019, 36(7): 076801 https://doi.org/10.1088/0256-307X/36/7/076801
56
Zhang D., Shi M., Zhu T., Xing D., Zhang H., Wang J.. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect.Phys. Rev. Lett., 2019, 122(20): 206401 https://doi.org/10.1103/PhysRevLett.122.206401
57
M. Otrokov M., P. Rusinov I., Blanco-Rey M., Hoffmann M., Y. Vyazovskaya A., V. Eremeev S., Ernst A., M. Echenique P., Arnau A., V. Chulkov E.. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films.Phys. Rev. Lett., 2019, 122(10): 107202 https://doi.org/10.1103/PhysRevLett.122.107202
58
Li J., Li Y., Du S., Wang Z., L. Gu B., C. Zhang S., He K., Duan W., Xu Y.. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials.Sci. Adv., 2019, 5(6): eaaw5685 https://doi.org/10.1126/sciadv.aaw5685
59
M. Otrokov M., I. Klimovskikh I., Bentmann H., Estyunin D., Zeugner A., S. Aliev Z., Gaß S., U. B. Wolter A., V. Koroleva A., M. Shikin A., Blanco-Rey M., Hoffmann M., P. Rusinov I., Y. Vyazovskaya A., V. Eremeev S., M. Koroteev Y., M. Kuznetsov V., Freyse F., Sánchez-Barriga J., R. Amiraslanov I., B. Babanly M., T. Mamedov N., A. Abdullayev N., N. Zverev V., Alfonsov A., Kataev V., Büchner B., F. Schwier E., Kumar S., Kimura A., Petaccia L., Di Santo G., C. Vidal R., Schatz S., Kißner K., Ünzelmann M., H. Min C., Moser S., R. F. Peixoto T., Reinert F., Ernst A., M. Echenique P., Isaeva A., V. Chulkov E.. Prediction and observation of an antiferromagnetic topological insulator.Nature, 2019, 576(7787): 416 https://doi.org/10.1038/s41586-019-1840-9
60
S. Aliev Z., R. Amiraslanov I., I. Nasonova D., V. Shevelkov A., A. Abdullayev N., A. Jahangirli Z., N. Orujlu E., M. Otrokov M., T. Mamedov N., B. Babanly M., V. Chulkov E.. Novel ternary layered manganese bismuth tellurides of the MnTe−Bi2Te3 system: Synthesis and crystal structure.J. Alloys Compd., 2019, 789: 443 https://doi.org/10.1016/j.jallcom.2019.03.030
61
Wu J., Liu F., Liu C., Wang Y., Li C., Lu Y., Matsuishi S., Hosono H.. Toward 2D magnets in the (MnBi2Te4)(Bi2Te3)n bulk crystal.Adv. Mater., 2020, 32(23): e2001815 https://doi.org/10.1002/adma.202001815
62
Souchay D., Nentwig M., Günther D., Keilholz S., de Boor J., Zeugner A., Isaeva A., Ruck M., U. B. Wolter A., Büchner B., Oeckler O.. Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials.J. Mater. Chem. C, 2019, 7(32): 9939 https://doi.org/10.1039/C9TC00979E
63
S. Lee D., H. Kim T., H. Park C., Y. Chung C., S. Lim Y., S. Seo W., H. Park H., structure Crystal, of a new layered chalcogenide semiconductor properties. Bi2MnTe4.CrystEngComm, 2013, 15(27): 5532 https://doi.org/10.1039/c3ce40643a
64
Hirahara T., V. Eremeev S., Shirasawa T., Okuyama Y., Kubo T., Nakanishi R., Akiyama R., Takayama A., Hajiri T., I. Ideta S., Matsunami M., Sumida K., Miyamoto K., Takagi Y., Tanaka K., Okuda T., Yokoyama T., I. Kimura S., Hasegawa S., V. Chulkov E.. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer.Nano Lett., 2017, 17(6): 3493 https://doi.org/10.1021/acs.nanolett.7b00560
65
A. Hagmann J., Li X., Chowdhury S., N. Dong S., Rouvimov S., J. Pookpanratana S., Man Yu K., A. Orlova T., B. Bolin T., U. Segre C., G. Seiler D., A. Richter C., Liu X., Dobrowolska M., K. Furdyna J.. Molecular beam epitaxy growth and structure of self-assembled Bi2Se3/Bi2MnSe4 multilayer heterostructures.New J. Phys., 2017, 19(8): 085002 https://doi.org/10.1088/1367-2630/aa759c
66
Ding L., Hu C., Ye F., Feng E., Ni N., Cao H.. Crystal and magnetic structures of magnetic topological insulators MnBi2Te4 and MnBi4Te7.Phys. Rev. B, 2020, 101(2): 020412 https://doi.org/10.1103/PhysRevB.101.020412
67
Q. Yan J., Zhang Q., Heitmann T., Huang Z., Y. Chen K., G. Cheng J., Wu W., Vaknin D., C. Sales B., J. McQueeney R.. Crystal growth and magnetic structure of MnBi2Te4.Phys. Rev. Mater., 2019, 3(6): 064202 https://doi.org/10.1103/PhysRevMaterials.3.064202
68
Z. Shi M., Lei B., S. Zhu C., H. Ma D., H. Cui J., L. Sun Z., J. Ying J., H. Chen X.. Magnetic and transport properties in the magnetic topological insulators MnBi2Te4(Bi2Te3)n (n=1, 2).Phys. Rev. B, 2019, 100(15): 155144 https://doi.org/10.1103/PhysRevB.100.155144
69
J. Hao Y., Liu P., Feng Y., M. Ma X., F. Schwier E., Arita M., Kumar S., Hu C., Lu R., Zeng M., Wang Y., Hao Z., Y. Sun H., Zhang K., Mei J., Ni N., Wu L., Shimada K., Chen C., Liu Q., Liu C.. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. X, 2019, 9: 041038 https://doi.org/10.1103/PhysRevX.9.041038
70
Hu C., N. Gordon K., Liu P., Liu J., Zhou X., Hao P., Narayan D., Emmanouilidou E., Sun H., Liu Y., Brawer H., P. Ramirez A., Ding L., Cao H., Liu Q., Dessau D., Ni N.. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling.Nat. Commun., 2020, 11(1): 97 https://doi.org/10.1038/s41467-019-13814-x
71
M. Ma X., Chen Z., F. Schwier E., Zhang Y., J. Hao Y., Kumar S., Lu R., Shao J., Jin Y., Zeng M., R. Liu X., Hao Z., Zhang K., Mansuer W., Song C., Wang Y., Zhao B., Liu C., Deng K., Mei J., Shimada K., Zhao Y., Zhou X., Shen B., Huang W., Liu C., Xu H., Chen C.. Hybridization-induced gapped and gapless states on the surface of magnetic topological insulators.Phys. Rev. B, 2020, 102(24): 245136 https://doi.org/10.1103/PhysRevB.102.245136
72
Lu R., Sun H., Kumar S., Wang Y., Gu M., Zeng M., J. Hao Y., Li J., Shao J., M. Ma X., Hao Z., Zhang K., Mansuer W., Mei J., Zhao Y., Liu C., Deng K., Huang W., Shen B., Shimada K., F. Schwier E., Liu C., Liu Q., Chen C.. Half-magnetic topological insulator with magnetization-induced Dirac gap at a selected surface.Phys. Rev. X, 2021, 11(1): 011039 https://doi.org/10.1103/PhysRevX.11.011039
73
J. Chen Y., X. Xu L., H. Li J., W. Li Y., Y. Wang H., F. Zhang C., Li H., Wu Y., J. Liang A., Chen C., W. Jung S., Cacho C., H. Mao Y., Liu S., X. Wang M., F. Guo Y., Xu Y., K. Liu Z., X. Yang L., L. Chen Y.. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. X, 2019, 9(4): 041040 https://doi.org/10.1103/PhysRevX.9.041040
74
Li H., Y. Gao S., F. Duan S., F. Xu Y., J. Zhu K., J. Tian S., C. Gao J., H. Fan W., C. Rao Z., R. Huang J., J. Li J., Y. Yan D., T. Liu Z., L. Liu W., B. Huang Y., L. Li Y., Liu Y., B. Zhang G., Zhang P., Kondo T., Shin S., C. Lei H., G. Shi Y., T. Zhang W., M. Weng H., Qian T., Ding H.. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1.Phys. Rev. X, 2019, 9(4): 041039 https://doi.org/10.1103/PhysRevX.9.041039
75
Liang A., Chen C., Zheng H., Xia W., Huang K., Wei L., Yang H., Chen Y., Zhang X., Xu X., Wang M., Guo Y., Yang L., Liu Z., Chen Y.. Approaching a minimal topological electronic structure in antiferromagnetic topological insulator MnBi2Te4 via surface modification.Nano Lett., 2022, 22(11): 4307 https://doi.org/10.1021/acs.nanolett.1c04930
76
Xu R., Bai Y., Zhou J., Li J., Gu X., Qin N., Yin Z., Du X., Zhang Q., Zhao W., Li Y., Wu Y., Ding C., Wang L., Liang A., Liu Z., Xu Y., Feng X., He K., Chen Y., Yang L.. Evolution of the electronic structure of ultrathin MnBi2Te4 films.Nano Lett., 2022, 22(15): 6320 https://doi.org/10.1021/acs.nanolett.2c02034
77
C. Vidal R., Bentmann H., R. F. Peixoto T., Zeugner A., Moser S., H. Min C., Schatz S., Kißner K., Ünzelmann M., I. Fornari C., B. Vasili H., Valvidares M., Sakamoto K., Mondal D., Fujii J., Vobornik I., Jung S., Cacho C., K. Kim T., J. Koch R., Jozwiak C., Bostwick A., D. Denlinger J., Rotenberg E., Buck J., Hoesch M., Diekmann F., Rohlf S., Kalläne M., Rossnagel K., M. Otrokov M., V. Chulkov E., Ruck M., Isaeva A., Reinert F.. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001).Phys. Rev. B, 2019, 100(12): 121104 https://doi.org/10.1103/PhysRevB.100.121104
78
H. Lee S., Zhu Y., Wang Y., Miao L., Pillsbury T., Yi H., Kempinger S., Hu J., A. Heikes C., Quarterman P., Ratcliff W., A. Borchers J., Zhang H., Ke X., Graf D., Alem N., Z. Chang C., Samarth N., Mao Z.. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. Res., 2019, 1(1): 012011 https://doi.org/10.1103/PhysRevResearch.1.012011
79
Hu Y., Xu L., Shi M., Luo A., Peng S., Y. Wang Z., J. Ying J., Wu T., K. Liu Z., F. Zhang C., L. Chen Y., Xu G., H. Chen X., F. He J.. Universal gapless Dirac cone and tunable topological states in (MnBi2Te4)m(Bi2Te3)n heterostructures.Phys. Rev. B, 2020, 101: 161113(R) https://doi.org/10.1103/PhysRevB.101.161113
80
Nevola D., X. Li H., Q. Yan J., G. Moore R., N. Lee H., Miao H., D. Johnson P.. Coexistence of surface ferromagnetism and a gapless topological state in MnBi2Te4.Phys. Rev. Lett., 2020, 125(11): 117205 https://doi.org/10.1103/PhysRevLett.125.117205
81
M. Shikin A., A. Estyunin D., I. Klimovskikh I., O. Filnov S., F. Schwier E., Kumar S., Miyamoto K., Okuda T., Kimura A., Kuroda K., Yaji K., Shin S., Takeda Y., Saitoh Y., S. Aliev Z., T. Mamedov N., R. Amiraslanov I., B. Babanly M., M. Otrokov M., V. Eremeev S., V. Chulkov E.. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4.Sci. Rep., 2020, 10(1): 13226 https://doi.org/10.1038/s41598-020-70089-9
82
Swatek P., Wu Y., L. Wang L., Lee K., Schrunk B., Yan J., Kaminski A.. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. B, 2020, 101(16): 161109 https://doi.org/10.1103/PhysRevB.101.161109
83
M. Shikin A., A. Estyunin D., L. Zaitsev N., Glazkova D., I. Klimovskikh I., O. Filnov S., G. Rybkin A., F. Schwier E., Kumar S., Kimura A., Mamedov N., Aliev Z., B. Babanly M., Kokh K., E. Tereshchenko O., M. Otrokov M., V. Chulkov E., A. Zvezdin K., K. Zvezdin A.. Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission and ab initio study.Phys. Rev. B, 2021, 104(11): 115168 https://doi.org/10.1103/PhysRevB.104.115168
84
C. Vidal R., Bentmann H., I. Facio J., Heider T., Kagerer P., I. Fornari C., R. F. Peixoto T., Figgemeier T., Jung S., Cacho C., Buchner B., van den Brink J., M. Schneider C., Plucinski L., F. Schwier E., Shimada K., Richter M., Isaeva A., Reinert F.. Orbital complexity in intrinsic magnetic topological insulators MnBi4Te7 and MnBi6Te10.Phys. Rev. Lett., 2021, 126(17): 176403 https://doi.org/10.1103/PhysRevLett.126.176403
85
Wu X., Li J., M. Ma X., Zhang Y., Liu Y., S. Zhou C., Shao J., Wang Q., J. Hao Y., Feng Y., F. Schwier E., Kumar S., Sun H., Liu P., Shimada K., Miyamoto K., Okuda T., Wang K., Xie M., Chen C., Liu Q., Liu C., Zhao Y.. Distinct topological surface states on the two terminations of MnBi4Te7.Phys. Rev. X, 2020, 10(3): 031013 https://doi.org/10.1103/PhysRevX.10.031013
86
Tian S., Gao S., Nie S., Qian Y., Gong C., Fu Y., Li H., Fan W., Zhang P., Kondo T., Shin S., Adell J., Fedderwitz H., Ding H., Wang Z., Qian T., Lei H.. Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states.Phys. Rev. B, 2020, 102(3): 035144 https://doi.org/10.1103/PhysRevB.102.035144
87
I. Klimovskikh I., M. Otrokov M., Estyunin D., V. Eremeev S., O. Filnov S., Koroleva A., Shevchenko E., Voroshnin V., G. Rybkin A., P. Rusinov I., Blanco-Rey M., Hoffmann M., S. Aliev Z., B. Babanly M., R. Amiraslanov I., A. Abdullayev N., N. Zverev V., Kimura A., E. Tereshchenko O., A. Kokh K., Petaccia L., Di Santo G., Ernst A., M. Echenique P., T. Mamedov N., M. Shikin A., V. Chulkov E.. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family.npj Quantum Mater., 2020, 5: 54 https://doi.org/10.1038/s41535-020-00255-9
88
H. Jo N., L. Wang L., J. Slager R., Yan J., Wu Y., Lee K., Schrunk B., Vishwanath A., Kaminski A.. Intrinsic axion insulating behavior in antiferromagnetic MnBi6Te10.Phys. Rev. B, 2020, 102(4): 045130 https://doi.org/10.1103/PhysRevB.102.045130
89
Hu C., Ding L., N. Gordon K., Ghosh B., J. Tien H., Li H., G. Linn A., W. Lien S., Y. Huang C., Mackey S., Liu J., V. S. Reddy P., Singh B., Agarwal A., Bansil A., Song M., Li D., Y. Xu S., Lin H., Cao H., R. Chang T., Dessau D., Ni N.. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13.Sci. Adv., 2020, 6(30): eaba4275 https://doi.org/10.1126/sciadv.aba4275
90
Hirahara T., M. Otrokov M., T. Sasaki T., Sumida K., Tomohiro Y., Kusaka S., Okuyama Y., Ichinokura S., Kobayashi M., Takeda Y., Amemiya K., Shirasawa T., Ideta S., Miyamoto K., Tanaka K., Kuroda S., Okuda T., Hono K., V. Eremeev S., V. Chulkov E.. Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone.Nat. Commun., 2020, 11(1): 4821 https://doi.org/10.1038/s41467-020-18645-9
91
Wu J., Liu F., Sasase M., Ienaga K., Obata Y., Yukawa R., Horiba K., Kumigashira H., Okuma S., Inoshita T., Hosono H.. Natural van der Waals heterostructural single crystals with both magnetic and topological properties.Sci. Adv., 2019, 5(11): eaax9989 https://doi.org/10.1126/sciadv.aax9989
92
C. Vidal R., Zeugner A., I. Facio J., Ray R., H. Haghighi M., U. B. Wolter A., T. Corredor Bohorquez L., Caglieris F., Moser S., Figgemeier T., R. F. Peixoto T., B. Vasili H., Valvidares M., Jung S., Cacho C., Alfonsov A., Mehlawat K., Kataev V., Hess C., Richter M., Büchner B., van den Brink J., Ruck M., Reinert F., Bentmann H., Isaeva A.. Topological electronic structure and intrinsic magnetization in MnBi4Te7: A Bi2Te3 derivative with a periodic Mn sublattice.Phys. Rev. X, 2019, 9(4): 041065 https://doi.org/10.1103/PhysRevX.9.041065
93
Deng Y., Yu Y., S. Meng Z., Guo Z., Xu Z., Wang J., C. Xian H., Zhang Y.. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4.Science, 2020, 367(6480): 895 https://doi.org/10.1126/science.aax8156
94
Ge J., Liu Y., Li J., Li H., Luo T., Wu Y., Xu Y., Wang J.. High-Chern-number and high-temperature quantum Hall effect without Landau levels.Natl. Sci. Rev., 2020, 7(8): 1280 https://doi.org/10.1093/nsr/nwaa089
95
Gao A., F. Liu Y., Hu C., X. Qiu J., Tzschaschel C., Ghosh B., C. Ho S., Berube D., Chen R., Sun H., Zhang Z., Y. Zhang X., X. Wang Y., Wang N., Huang Z., Felser C., Agarwal A., Ding T., J. Tien H., Akey A., Gardener J., Singh B., Watanabe K., Taniguchi T., S. Burch K., C. Bell D., B. Zhou B., Gao W., Z. Lu H., Bansil A., Lin H., R. Chang T., Fu L., Ma Q., Ni N., Y. Xu S.. Layer Hall effect in a 2D topological axion antiferromagnet.Nature, 2021, 595(7868): 521 https://doi.org/10.1038/s41586-021-03679-w
96
Li S.Gong M. Cheng S.Jiang H.C. Xie X., Dissipationless layertronics in axion insulator MnBi2Te4, arXiv: 2207.09186 (2022)
97
Xu L., Mao Y., Wang H., Li J., Chen Y., Xia Y., Li Y., Pei D., Zhang J., Zheng H., Huang K., Zhang C., Cui S., Liang A., Xia W., Su H., Jung S., Cacho C., Wang M., Li G., Xu Y., Guo Y., Yang L., Liu Z., Chen Y., Jiang M.. Persistent surface states with diminishing gap in MnBi2Te4/Bi2Te3 superlattice antiferromagnetic topological insulator.Sci. Bull. (Beijing), 2020, 65(24): 2086 https://doi.org/10.1016/j.scib.2020.07.032
98
V. Eremeev S., P. Rusinov I., M. Koroteev Y., Y. Vyazovskaya A., Hoffmann M., M. Echenique P., Ernst A., M. Otrokov M., V. Chulkov E.. Topological magnetic materials of the (MnSb2Te4)·(Sb2Te3)n van der Waals compounds family.J. Phys. Chem. Lett., 2021, 12(17): 4268 https://doi.org/10.1021/acs.jpclett.1c00875
99
V. Eremeev S., M. Otrokov M., V. Chulkov E.. Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4 compounds: An ab-initio study.J. Alloys Compd., 2017, 709: 172 https://doi.org/10.1016/j.jallcom.2017.03.121
100
Murakami T., Nambu Y., Koretsune T., Xiangyu G., Yamamoto T., M. Brown C., Kageyama H.. Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state.Phys. Rev. B, 2019, 100(19): 195103 https://doi.org/10.1103/PhysRevB.100.195103
101
Q. Yan J., Okamoto S., A. McGuire M., F. May A., J. McQueeney R., C. Sales B.. Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4.Phys. Rev. B, 2019, 100(10): 104409 https://doi.org/10.1103/PhysRevB.100.104409
102
Chen L., Wang D., Shi C., Jiang C., Liu H., Cui G., Zhang X., Li X.. Electronic structure and magnetism of MnSb2Te4.J. Mater. Sci., 2020, 55(29): 14292 https://doi.org/10.1007/s10853-020-05005-7
103
Chen Y., W. Chuang Y., H. Lee S., Zhu Y., Honz K., Guan Y., Wang Y., Wang K., Mao Z., Zhu J., Heikes C., Quarterman P., Zajdel P., A. Borchers J., Ratcliff W.. Ferromagnetism in van der Waals compound MnSb1.8Bi0.2Te4.Phys. Rev. Mater., 2020, 4(6): 064411 https://doi.org/10.1103/PhysRevMaterials.4.064411
104
Shi G., Zhang M., Yan D., Feng H., Yang M., Shi Y., Li Y.. Anomalous Hall effect in layered ferrimagnet MnSb2Te4.Chin. Phys. Lett., 2020, 37(4): 047301 https://doi.org/10.1088/0256-307X/37/4/047301
105
Wimmer S., Sanchez-Barriga J., Kuppers P., Ney A., Schierle E., Freyse F., Caha O., Michalicka J., Liebmann M., Primetzhofer D., Hoffman M., Ernst A., M. Otrokov M., Bihlmayer G., Weschke E., Lake B., V. Chulkov E., Morgenstern M., Bauer G., Springholz G., Rader O.. Mn-rich MnSb2Te4: A topological insulator with magnetic gap closing at high Curie temperatures of 45−50 K.Adv. Mater., 2021, 33(42): 2102935 https://doi.org/10.1002/adma.202102935
106
Zang Z., Zhu Y., Xi M., Tian S., Wang T., Gu P., Peng Y., Yang S., Xu X., Li Y., Han B., Liu L., Wang Y., Gao P., Yang J., Lei H., Huang Y., Ye Y.. Layer-number-dependent antiferromagnetic and ferromagnetic behavior in MnSb2Te4.Phys. Rev. Lett., 2022, 128(1): 017201 https://doi.org/10.1103/PhysRevLett.128.017201
107
Huan S., Zhang S., Jiang Z., Su H., Wang H., Zhang X., Yang Y., Liu Z., Wang X., Yu N., Zou Z., Shen D., Liu J., Guo Y.. Multiple magnetic topological phases in bulk van der Waals crystal MnSb4Te7.Phys. Rev. Lett., 2021, 126(24): 246601 https://doi.org/10.1103/PhysRevLett.126.246601
108
Yin Y., Ma X., Yan D., Yi C., Yue B., Dai J., Zhao L., Yu X., Shi Y., T. Wang J., Hong F.. Pressure-driven electronic and structural phase transition in intrinsic magnetic topological insulator MnSb2Te4.Phys. Rev. B, 2021, 104(17): 174114 https://doi.org/10.1103/PhysRevB.104.174114
109
Y. Lin J., J. Chen Z., Q. Xie W., B. Yang X., J. Zhao Y.. Toward ferromagnetic semimetal ground state with multiple Weyl nodes in van der Waals crystal MnSb4Te7.New J. Phys., 2022, 24(4): 043033 https://doi.org/10.1088/1367-2630/ac6231
110
Pei C., Xi M., Wang Q., Shi W., Wu J., Gao L., Zhao Y., Tian S., Cao W., Li C., Zhang M., Zhu S., Chen Y., Lei H., Qi Y.. Pressure-induced superconductivity in magnetic topological insulator candidate MnSb4Te7.Phys. Rev. Mater., 2022, 6(10): L101801 https://doi.org/10.1103/PhysRevMaterials.6.L101801
111
Zhang X., Tunable intrinsic ferromagnetic topological phases in bulk van der Waals crystal MnSb6Te10, arXiv: 2111.04973 (2021)
112
M. Ma X., Zhao Y., Zhang K., Kumar S., Lu R., Li J., Yao Q., Shao J., Hou F., Wu X., Zeng M., J. Hao Y., Hao Z., Wang Y., R. Liu X., Shen H., Sun H., Mei J., Miyamoto K., Okuda T., Arita M., F. Schwier E., Shimada K., Deng K., Liu C., Lin J., Zhao Y., Chen C., Liu Q., Liu C.. Realization of a tunable surface Dirac gap in Sb-doped MnBi2Te4.Phys. Rev. B, 2021, 103(12): L121112 https://doi.org/10.1103/PhysRevB.103.L121112
113
Zhu T., J. Bishop A., Zhou T., Zhu M., J. O’Hara D., A. Baker A., Cheng S., C. Walko R., J. Repicky J., Liu T., A. Gupta J., M. Jozwiak C., Rotenberg E., Hwang J., Zutic I., K. Kawakami R.. Synthesis, magnetic properties, and electronic structure of magnetic topological insulator MnBi2Se4.Nano Lett., 2021, 21(12): 5083 https://doi.org/10.1021/acs.nanolett.1c00141
114
Q. Arguilla M., D. Cultrara N., J. Baum Z., Jiang S., D. Ross R., E. Goldberger J.. EuSn2As2: an exfoliatable magnetic layered Zintl–Klemm phase.Inorg. Chem. Front., 2017, 4(2): 378 https://doi.org/10.1039/C6QI00476H
115
Kabir F., Observation of multiple Dirac states in a magnetic topological material EuMg2Bi2, arXiv: 1912.08645 (2019)
116
Regmi S., M. Hosen M., Ghosh B., Singh B., Dhakal G., Sims C., Wang B., Kabir F., Dimitri K., Liu Y., Agarwal A., Lin H., Kaczorowski D., Bansil A., Neupane M.. Temperature-dependent electronic structure in a higher-order topological insulator candidate EuIn2As2.Phys. Rev. B, 2020, 102(16): 165153 https://doi.org/10.1103/PhysRevB.102.165153
117
Marshall M., Pletikosić I., Yahyavi M., J. Tien H., R. Chang T., Cao H., Xie W.. Magnetic and electronic structures of antiferromagnetic topological material candidate EuMg2Bi2.J. Appl. Phys., 2021, 129(3): 035106 https://doi.org/10.1063/5.0035703
118
Zhang Y., Deng K., Zhang X., Wang M., Wang Y., Liu C., W. Mei J., Kumar S., F. Schwier E., Shimada K., Chen C., Shen B.. In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn2As2.Phys. Rev. B, 2020, 101(20): 205126 https://doi.org/10.1103/PhysRevB.101.205126
119
Zhao L., Yi C., T. Wang C., Chi Z., Yin Y., Ma X., Dai J., Yang P., Yue B., Cheng J., Hong F., T. Wang J., Han Y., Shi Y., Yu X.. Monoclinic EuSn2As2: A novel high-pressure network structure.Phys. Rev. Lett., 2021, 126(15): 155701 https://doi.org/10.1103/PhysRevLett.126.155701
120
X. M. Riberolles S., V. Trevisan T., Kuthanazhi B., W. Heitmann T., Ye F., C. Johnston D., L. Bud’ko S., H. Ryan D., C. Canfield P., Kreyssig A., Vishwanath A., J. McQueeney R., Wang L., P. Orth P., G. Ueland B.. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2.Nat. Commun., 2021, 12(1): 999 https://doi.org/10.1038/s41467-021-21154-y
121
C. Chen H., F. Lou Z., X. Zhou Y., Chen Q., J. Xu B., J. Chen S., H. Du J., H. Yang J., D. Wang H., H. Fang M.. Negative magnetoresistance in antiferromagnetic topological insulator EuSn2As2.Chin. Phys. Lett., 2020, 37(4): 047201 https://doi.org/10.1088/0256-307X/37/4/047201
122
Li H., Gao W., Chen Z., Chu W., Nie Y., Ma S., Han Y., Wu M., Li T., Niu Q., Ning W., Zhu X., Tian M.. Magnetic properties of the layered magnetic topological insulator EuSn2As2.Phys. Rev. B, 2021, 104(5): 054435 https://doi.org/10.1103/PhysRevB.104.054435
123
Sun H., Chen C., Hou Y., Wang W., Gong Y., Huo M., Li L., Yu J., Cai W., Liu N., Wu R., X. Yao D., Wang M.. Magnetism variation of the compressed antiferromagnetic topological insulator EuSn2As2.Sci. China Phys. Mech. Astron., 2021, 64(11): 118211 https://doi.org/10.1007/s11433-021-1760-x
124
M. Goforth A., Klavins P., C. Fettinger J., M. Kauzlarich S.. Magnetic properties and negative colossal magnetoresistance of the rare earth Zintl phase EuIn2As2.Inorg. Chem., 2008, 47(23): 11048 https://doi.org/10.1021/ic801290u
125
Tolinski T.Kaczorowski D., Magnetic properties of the putative higher-order topological insulator EuIn2As2, SciPost Physics Proceedings, doi: 10.21468/SciPostPhysProc (2022)
Gong M., Sar D., Friedman J., Kaczorowski D., Abdel Razek S., C. Lee W., Aynajian P.. Surface state evolution induced by magnetic order in axion insulator candidate EuIn2As2.Phys. Rev. B, 2022, 106(12): 125156 https://doi.org/10.1103/PhysRevB.106.125156
128
Rosa P., Xu Y., Rahn M., Souza J., Kushwaha S., Veiga L., Bombardi A., Thomas S., Janoschek M., Bauer E., Chan M., Wang Z., Thompson J., Harrison N., Pagliuso P., Bernevig A., Ronning F.. Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator.npj Quantum Mater., 2020, 5: 52 https://doi.org/10.1038/s41535-020-00256-8
129
Varnava N., Berry T., M. McQueen T., Vanderbilt D.. Engineering magnetic topological insulators in Eu5M2X6 Zintl compounds.Phys. Rev. B, 2022, 105(23): 235128 https://doi.org/10.1103/PhysRevB.105.235128
130
Wang H., Mao N., Hu X., Dai Y., Huang B., Niu C.. A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions.Mater. Horiz., 2021, 8(3): 956 https://doi.org/10.1039/D0MH01214A
131
Liu J., Meng S., T. Sun J.. Spin-orientation-dependent topological states in two-dimensional antiferromagnetic NiTl2S4 monolayers.Nano Lett., 2019, 19(5): 3321 https://doi.org/10.1021/acs.nanolett.9b00948
132
Tang P., Zhou Q., Xu G., C. Zhang S.. Dirac fermions in an antiferromagnetic semimetal.Nat. Phys., 2016, 12(12): 1100 https://doi.org/10.1038/nphys3839
Li S., Liu Y., M. Yu Z., Jiao Y., Guan S., L. Sheng X., Yao Y., A. Yang S.. Two-dimensional antiferromagnetic Dirac fermions in monolayer TaCoTe2.Phys. Rev. B, 2019, 100(20): 205102 https://doi.org/10.1103/PhysRevB.100.205102
136
Morali N., Batabyal R., K. Nag P., Liu E., Xu Q., Sun Y., Yan B., Felser C., Avraham N., Beidenkopf H.. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2.Science, 2019, 365(6459): 1286 https://doi.org/10.1126/science.aav2334
137
F. Liu D., J. Liang A., K. Liu E., N. Xu Q., W. Li Y., Chen C., Pei D., J. Shi W., K. Mo S., Dudin P., Kim T., Cacho C., Li G., Sun Y., X. Yang L., K. Liu Z., S. P. Parkin S., Felser C., L. Chen Y.. Magnetic Weyl semimetal phase in a Kagomé crystal.Science, 2019, 365(6459): 1282 https://doi.org/10.1126/science.aav2873
138
Kuroda K., Tomita T., T. Suzuki M., Bareille C., A. Nugroho A., Goswami P., Ochi M., Ikhlas M., Nakayama M., Akebi S., Noguchi R., Ishii R., Inami N., Ono K., Kumigashira H., Varykhalov A., Muro T., Koretsune T., Arita R., Shin S., Kondo T., Nakatsuji S.. Evidence for magnetic Weyl fermions in a correlated metal.Nat. Mater., 2017, 16(11): 1090 https://doi.org/10.1038/nmat4987
139
K. Nayak A., E. Fischer J., Sun Y., Yan B., Karel J., C. Komarek A., Shekhar C., Kumar N., Schnelle W., Kübler J., Felser C., S. P. Parkin S.. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.Sci. Adv., 2016, 2(4): e1501870 https://doi.org/10.1126/sciadv.1501870
140
Nakatsuji S., Kiyohara N., Higo T.. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.Nature, 2015, 527(7577): 212 https://doi.org/10.1038/nature15723
141
Q. Lv B., Xu N., M. Weng H., Z. Ma J., Richard P., C. Huang X., X. Zhao L., F. Chen G., E. Matt C., Bisti F., N. Strocov V., Mesot J., Fang Z., Dai X., Qian T., Shi M., Ding H.. Observation of Weyl nodes in TaAs.Nat. Phys., 2015, 11(9): 724 https://doi.org/10.1038/nphys3426
142
Z. Ma J., B. He J., F. Xu Y., Q. Lv B., Chen D., L. Zhu W., Zhang S., Y. Kong L., Gao X., Y. Rong L., B. Huang Y., Richard P., Y. Xi C., S. Choi E., Shao Y., L. Wang Y., J. Gao H., Dai X., Fang C., M. Weng H., F. Chen G., Qian T., Ding H.. Three-component fermions with surface Fermi arcs in tungsten carbide.Nat. Phys., 2018, 14(4): 349 https://doi.org/10.1038/s41567-017-0021-8
143
Y. Xu S., Alidoust N., Belopolski I., Yuan Z., Bian G., R. Chang T., Zheng H., N. Strocov V., S. Sanchez D., Chang G., Zhang C., Mou D., Wu Y., Huang L., C. Lee C., M. Huang S., K. Wang B., Bansil A., T. Jeng H., Neupert T., Kaminski A., Lin H., Jia S., Zahid Hasan M.. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide.Nat. Phys., 2015, 11(9): 748 https://doi.org/10.1038/nphys3437
144
X. Yang L., K. Liu Z., Sun Y., Peng H., F. Yang H., Zhang T., Zhou B., Zhang Y., F. Guo Y., Rahn M., Prabhakaran D., Hussain Z., K. Mo S., Felser C., Yan B., L. Chen Y.. Weyl semimetal phase in the non-centrosymmetric compound TaAs.Nat. Phys., 2015, 11(9): 728 https://doi.org/10.1038/nphys3425
145
K. Liu Z., Zhou B., Zhang Y., J. Wang Z., M. Weng H., Prabhakaran D., K. Mo S., X. Shen Z., Fang Z., Dai X., Hussain Z., L. Chen Y., of a three-dimensional topological Dirac semimetal Discovery. Na3Bi.Science, 2014, 343(6173): 864 https://doi.org/10.1126/science.1245085
146
K. Liu Z., Jiang J., Zhou B., J. Wang Z., Zhang Y., M. Weng H., Prabhakaran D., K. Mo S., Peng H., Dudin P., Kim T., Hoesch M., Fang Z., Dai X., X. Shen Z., L. Feng D., Hussain Z., L. Chen Y.. A stable three-dimensional topological Dirac semimetal Cd3As2.Nat. Mater., 2014, 13(7): 677 https://doi.org/10.1038/nmat3990
147
Neupane M., Y. Xu S., Sankar R., Alidoust N., Bian G., Liu C., Belopolski I., R. Chang T., T. Jeng H., Lin H., Bansil A., Chou F., Z. Hasan M.. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.Nat. Commun., 2014, 5(1): 3786 https://doi.org/10.1038/ncomms4786
148
Xu G., Weng H., Wang Z., Dai X., Fang Z.. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4.Phys. Rev. Lett., 2011, 107(18): 186806 https://doi.org/10.1103/PhysRevLett.107.186806
149
H. Do S., Kaneko K., Kajimoto R., Kamazawa K., B. Stone M., Y. Y. Lin J., Itoh S., Masuda T., D. Samolyuk G., Dagotto E., R. Meier W., C. Sales B., Miao H., D. Christianson A.. Damped Dirac magnon in the metallic Kagomé antiferromagnet FeSn.Phys. Rev. B, 2022, 105(18): L180403 https://doi.org/10.1103/PhysRevB.105.L180403
150
Lin Z., Wang C., Wang P., Yi S., Li L., Zhang Q., Wang Y., Wang Z., Huang H., Sun Y., Huang Y., Shen D., Feng D., Sun Z., H. Cho J., Zeng C., Zhang Z.. Dirac fermions in antiferromagnetic FeSn Kagomé lattices with combined space inversion and time-reversal symmetry.Phys. Rev. B, 2020, 102(15): 155103 https://doi.org/10.1103/PhysRevB.102.155103
151
Kang M., Ye L., Fang S., S. You J., Levitan A., Han M., I. Facio J., Jozwiak C., Bostwick A., Rotenberg E., K. Chan M., D. McDonald R., Graf D., Kaznatcheev K., Vescovo E., C. Bell D., Kaxiras E., van den Brink J., Richter M., Prasad Ghimire M., G. Checkelsky J., Comin R.. Dirac fermions and flat bands in the ideal Kagomé metal FeSn.Nat. Mater., 2020, 19(2): 163 https://doi.org/10.1038/s41563-019-0531-0
152
Han M., Inoue H., Fang S., John C., Ye L., K. Chan M., Graf D., Suzuki T., P. Ghimire M., J. Cho W., Kaxiras E., G. Checkelsky J.. Evidence of two-dimensional flat band at the surface of antiferromagnetic Kagomé metal FeSn.Nat. Commun., 2021, 12(1): 5345 https://doi.org/10.1038/s41467-021-25705-1
153
H. Lee S., Kim Y., Cho B., Park J., S. Kim M., Park K., Jeon H., Jung M., Park K., D. Lee J., Seo J.. Spin-polarized and possible pseudospin-polarized scanning tunneling microscopy in Kagomé metal FeSn.Commun. Phys., 2022, 5(1): 235 https://doi.org/10.1038/s42005-022-01012-z
154
C. Sales B., Yan J., R. Meier W., D. Christianson A., Okamoto S., A. McGuire M.. Electronic, magnetic, and thermodynamic properties of the Kagomé layer compound FeSn.Phys. Rev. Mater., 2019, 3(11): 114203 https://doi.org/10.1103/PhysRevMaterials.3.114203
155
Liu C., J. Yi C., Y. Wang X., L. Shen J., Xie T., Yang L., Fennel T., Stuhr U., L. Li S., M. Weng H., G. Shi Y., K. Liu E., Q. Luo H.. Anisotropic magnetoelastic response in the magnetic Weyl semimetal Co3Sn2S2.Sci. China Phys. Mech. Astron., 2021, 64(5): 257511 https://doi.org/10.1007/s11433-020-1655-2
156
F. Liu D., K. Liu E., N. Xu Q., L. Shen J., W. Li Y., Pei D., J. Liang A., Dudin P., K. Kim T., Cacho C., F. Xu Y., Sun Y., X. Yang L., K. Liu Z., Felser C., S. P. Parkin S., L. Chen Y.. Direct observation of the spin–orbit coupling effect in magnetic Weyl semimetal Co3Sn2S2.npj Quantum Mater., 2022, 7: 11 https://doi.org/10.1038/s41535-021-00392-9
157
Kanagaraj M., Ning J., He L.. Topological Co3Sn2S2 magnetic Weyl semimetal: From fundamental understanding to diverse fields of study.Reviews in Physics, 2022, 8: 100072 https://doi.org/10.1016/j.revip.2022.100072
158
Belopolski I., A. Cochran T., Liu X., J. Cheng Z., P. Yang X., Guguchia Z., S. Tsirkin S., X. Yin J., Vir P., S. Thakur G., S. Zhang S., Zhang J., Kaznatcheev K., Cheng G., Chang G., Multer D., Shumiya N., Litskevich M., Vescovo E., K. Kim T., Cacho C., Yao N., Felser C., Neupert T., Z. Hasan M.. Signatures of Weyl fermion annihilation in a correlated Kagomé magnet.Phys. Rev. Lett., 2021, 127(25): 256403 https://doi.org/10.1103/PhysRevLett.127.256403
159
Li G., Xu Q., Shi W., Fu C., Jiao L., E. Kamminga M., Yu M., Tüysüz H., Kumar N., Süß V., Saha R., K. Srivastava A., Wirth S., Auffermann G., Gooth J., Parkin S., Sun Y., Liu E., Felser C.. Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation.Sci. Adv., 2019, 5(8): eaaw9867 https://doi.org/10.1126/sciadv.aaw9867
160
Xu Q., Liu E., Shi W., Muechler L., Gayles J., Felser C., Sun Y.. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2.Phys. Rev. B, 2018, 97(23): 235416 https://doi.org/10.1103/PhysRevB.97.235416
161
Wang Q., Xu Y., Lou R., Liu Z., Li M., Huang Y., Shen D., Weng H., Wang S., Lei H.. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions.Nat. Commun., 2018, 9(1): 3681 https://doi.org/10.1038/s41467-018-06088-2
162
Tanaka M., Fujishiro Y., Mogi M., Kaneko Y., Yokosawa T., Kanazawa N., Minami S., Koretsune T., Arita R., Tarucha S., Yamamoto M., Tokura Y.. Topological Kagomé magnet Co3Sn2S2 thin flakes with high electron mobility and large anomalous Hall effect.Nano Lett., 2020, 20(10): 7476 https://doi.org/10.1021/acs.nanolett.0c02962
163
Reichlova H., Janda T., Godinho J., Markou A., Kriegner D., Schlitz R., Zelezny J., Soban Z., Bejarano M., Schultheiss H., Nemec P., Jungwirth T., Felser C., Wunderlich J., T. B. Goennenwein S.. Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn.Nat. Commun., 2019, 10(1): 5459 https://doi.org/10.1038/s41467-019-13391-z
164
Chen T., Tomita T., Minami S., Fu M., Koretsune T., Kitatani M., Muhammad I., Nishio-Hamane D., Ishii R., Ishii F., Arita R., Nakatsuji S.,Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn. Ge.Nat. Commun., 2021, 12(1): 572 https://doi.org/10.1038/s41467-020-20838-1
165
R. Soh J., de Juan F., Qureshi N., Jacobsen H., Y. Wang H., F. Guo Y., T. Boothroyd A.. Ground-state magnetic structure of Mn3Ge.Phys. Rev. B, 2020, 101(14): 140411 https://doi.org/10.1103/PhysRevB.101.140411
166
Liu J., Balents L.. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge.Phys. Rev. Lett., 2017, 119(8): 087202 https://doi.org/10.1103/PhysRevLett.119.087202
167
Yang H., Sun Y., Zhang Y., J. Shi W., S. P. Parkin S., Yan B.. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn.New J. Phys., 2017, 19(1): 015008 https://doi.org/10.1088/1367-2630/aa5487
Higo T., Qu D., Li Y., L. Chien C., Otani Y., Nakatsuji S.. Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn.Appl. Phys. Lett., 2018, 113(20): 202402 https://doi.org/10.1063/1.5064697
170
Matsuda T., Kanda N., Higo T., P. Armitage N., Nakatsuji S., Matsunaga R.. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films.Nat. Commun., 2020, 11(1): 909 https://doi.org/10.1038/s41467-020-14690-6
171
M. Taylor J., Markou A., Lesne E., K. Sivakumar P., Luo C., Radu F., Werner P., Felser C., S. P. Parkin S.. Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn3Sn.Phys. Rev. B, 2020, 101(9): 094404 https://doi.org/10.1103/PhysRevB.101.094404
172
Ikhlas M., Tomita T., Koretsune T., T. Suzuki M., Nishio-Hamane D., Arita R., Otani Y., Nakatsuji S.. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet.Nat. Phys., 2017, 13(11): 1085 https://doi.org/10.1038/nphys4181
173
Wuttke C., Caglieris F., Sykora S., Scaravaggi F., U. B. Wolter A., Manna K., Süss V., Shekhar C., Felser C., Büchner B., Hess C.. Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge.Phys. Rev. B, 2019, 100(8): 085111 https://doi.org/10.1103/PhysRevB.100.085111
174
Li X., Collignon C., Xu L., Zuo H., Cavanna A., Gennser U., Mailly D., Fauque B., Balents L., Zhu Z., Behnia K.. Chiral domain walls of Mn3Sn and their memory.Nat. Commun., 2019, 10(1): 3021 https://doi.org/10.1038/s41467-019-10815-8
175
K. Rout P., V. P. Madduri P., K. Manna S., K. Nayak A.. Field-induced topological Hall effect in the noncoplanar triangular antiferromagnetic geometry of Mn3Sn.Phys. Rev. B, 2019, 99(9): 094430 https://doi.org/10.1103/PhysRevB.99.094430
176
Xu L., Li X., Ding L., Behnia K., Zhu Z.. Planar Hall effect caused by the memory of antiferromagnetic domain walls in Mn3Ge.Appl. Phys. Lett., 2020, 117(22): 222403 https://doi.org/10.1063/5.0030546
177
Kimata M., Chen H., Kondou K., Sugimoto S., K. Muduli P., Ikhlas M., Omori Y., Tomita T., H. MacDonald A., Nakatsuji S., Otani Y.. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet.Nature, 2019, 565(7741): 627 https://doi.org/10.1038/s41586-018-0853-0
178
Li P., Koo J., Ning W., Li J., Miao L., Min L., Zhu Y., Wang Y., Alem N., X. Liu C., Mao Z., Yan B.. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl.Nat. Commun., 2020, 11(1): 3476 https://doi.org/10.1038/s41467-020-17174-9
179
Chang G., Y. Xu S., Zhou X., M. Huang S., Singh B., Wang B., Belopolski I., Yin J., Zhang S., Bansil A., Lin H., Z. Hasan M.. Topological Hopf and chain link semimetal states and their application to Co2MnGa.Phys. Rev. Lett., 2017, 119(15): 156401 https://doi.org/10.1103/PhysRevLett.119.156401
180
Belopolski I., Chang G., A. Cochran T., J. Cheng Z., P. Yang X., Hugelmeyer C., Manna K., X. Yin J., Cheng G., Multer D., Litskevich M., Shumiya N., S. Zhang S., Shekhar C., B. M. Schroter N., Chikina A., Polley C., Thiagarajan B., Leandersson M., Adell J., M. Huang S., Yao N., N. Strocov V., Felser C., Z. Hasan M.. Observation of a linked-loop quantum state in a topological magnet.Nature, 2022, 604(7907): 647 https://doi.org/10.1038/s41586-022-04512-8
181
Wang Z., G. Vergniory M., Kushwaha S., Hirschberger M., V. Chulkov E., Ernst A., P. Ong N., J. Cava R., A. Bernevig B.. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys.Phys. Rev. Lett., 2016, 117(23): 236401 https://doi.org/10.1103/PhysRevLett.117.236401
182
Chang G., Y. Xu S., Zheng H., Singh B., H. Hsu C., Bian G., Alidoust N., Belopolski I., S. Sanchez D., Zhang S., Lin H., Z. Hasan M., Room-temperature magnetic topological Weyl fermion, nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si. Ge, or Sn).Sci. Rep., 2016, 6(1): 38839 https://doi.org/10.1038/srep38839
183
Y. Umetsu R., Kobayashi K., Fujita A., Kainuma R., Ishida K.. Magnetic properties and stability of L21 and B2 phases in the Co2MnAl Heusler alloy.J. Appl. Phys., 2008, 103(7): 07D718 https://doi.org/10.1063/1.2836677
184
W. Carbonari A., N. Saxena R., Jr Pendl W., Mestnik Filho J., N. Attili R., Olzon-Dionysio M., D. de Souza S., Magnetic hyperfine field in the Heusler alloys Co2YZ (Y = V, Nb Z = Al. Ga).J. Magn. Magn. Mater., 1996, 163(3): 313 https://doi.org/10.1016/S0304-8853(96)00338-1
Ezawa M., semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link Topological. Solomon’s knot, trefoil knot, and other linked nodal varieties.Phys. Rev. B, 2017, 96(4): 041202 https://doi.org/10.1103/PhysRevB.96.041202
Sumida K., Sakuraba Y., Masuda K., Kono T., Kakoki M., Goto K., Zhou W., Miyamoto K., Miura Y., Okuda T., Kimura A.. Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films.Commun. Mater., 2020, 1(1): 89 https://doi.org/10.1038/s43246-020-00088-w
189
Wu Q., A. Soluyanov A., Bzdusek T.. Non-Abelian band topology in noninteracting metals.Science, 2019, 365(6459): 1273 https://doi.org/10.1126/science.aau8740
190
Belopolski I., Manna K., S. Sanchez D., Chang G., Ernst B., Yin J., S. Zhang S., Cochran T., Shumiya N., Zheng H., Singh B., Bian G., Multer D., Litskevich M., Zhou X., M. Huang S., Wang B., R. Chang T., Y. Xu S., Bansil A., Felser C., Lin H., Z. Hasan M.. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet.Science, 2019, 365(6459): 1278 https://doi.org/10.1126/science.aav2327
191
Zhong C., Chen Y., M. Yu Z., Xie Y., Wang H., A. Yang S., Zhang S.. Three-dimensional pentagon carbon with a genesis of emergent fermions.Nat. Commun., 2017, 8(1): 15641 https://doi.org/10.1038/ncomms15641
192
Bouhon A., S. Wu Q., J. Slager R., Weng H., V. Yazyev O., Bzdušek T.. Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe.Nat. Phys., 2020, 16(11): 1137 https://doi.org/10.1038/s41567-020-0967-9
193
Yuan J., Shi X., Su H., Zhang X., Wang X., Yu N., Zou Z., Zhao W., Liu J., Guo Y.. Magnetization tunable Weyl states in EuB6.Phys. Rev. B, 2022, 106(5): 054411 https://doi.org/10.1103/PhysRevB.106.054411
194
Y. Gao S., Xu S., Li H., J. Yi C., M. Nie S., C. Rao Z., Wang H., X. Hu Q., Z. Chen X., H. Fan W., R. Huang J., B. Huang Y., Pryds N., Shi M., J. Wang Z., G. Shi Y., L. Xia T., Qian T., Ding H.. Time-reversal symmetry breaking driven topological phase transition in EuB6.Phys. Rev. X, 2021, 11(2): 021016 https://doi.org/10.1103/PhysRevX.11.021016
195
Nie S., Sun Y., B. Prinz F., Wang Z., Weng H., Fang Z., Dai X.. Magnetic semimetals and quantized anomalous Hall effect in EuB6.Phys. Rev. Lett., 2020, 124(7): 076403 https://doi.org/10.1103/PhysRevLett.124.076403
196
Zhang X., von Molnar S., Fisk Z., Xiong P.. Spin-dependent electronic states of the ferromagnetic semimetal EuB6.Phys. Rev. Lett., 2008, 100(16): 167001 https://doi.org/10.1103/PhysRevLett.100.167001
197
Kim J., Ku W., C. Lee C., S. Ellis D., K. Cho B., H. Said A., Shvyd’ko Y., J. Kim Y.. Spin-split conduction band in EuB6 and tuning of half-metallicity with external stimuli.Phys. Rev. B, 2013, 87(15): 155104 https://doi.org/10.1103/PhysRevB.87.155104
198
Süllow S., Prasad I., C. Aronson M., L. Sarrao J., Fisk Z., Hristova D., H. Lacerda A., F. Hundley M., Vigliante A., Gibbs D.. Structure and magnetic order of EuB6.Phys. Rev. B, 1998, 57(10): 5860 https://doi.org/10.1103/PhysRevB.57.5860
199
L. Brooks M., Lancaster T., J. Blundell S., Hayes W., L. Pratt F., Fisk Z.. Magnetic phase separation in EuB6 detected by muon spin rotation.Phys. Rev. B, 2004, 70(2): 020401 https://doi.org/10.1103/PhysRevB.70.020401
200
Degiorgi L., Felder E., R. Ott H., L. Sarrao J., Fisk Z.. Low-temperature anomalies and ferromagnetism of EuB6.Phys. Rev. Lett., 1997, 79(25): 5134 https://doi.org/10.1103/PhysRevLett.79.5134
201
N. Guy C., von Molnar S., Etourneau J., Fisk Z.. Charge transport and pressure dependence of Tc of single crystal, ferromagnetic EuB6.Solid State Commun., 1980, 33(10): 1055 https://doi.org/10.1016/0038-1098(80)90316-6
202
Nyhus P., Yoon S., Kauffman M., L. Cooper S., Fisk Z., Sarrao J.. Spectroscopic study of bound magnetic polaron formation and the metal-semiconductor transition in EuB6.Phys. Rev. B, 1997, 56(5): 2717 https://doi.org/10.1103/PhysRevB.56.2717
203
Beaudin G., M. Fournier L., D. Bianchi A., Nicklas M., Kenzelmann M., Laver M., Witczak-Krempa W.. Possible quantum nematic phase in a colossal magnetoresistance material.Phys. Rev. B, 2022, 105(3): 035104 https://doi.org/10.1103/PhysRevB.105.035104
204
L. Liu W., Zhang X., M. Nie S., T. Liu Z., Y. Sun X., Y. Wang H., Y. Ding J., Jiang Q., Sun L., H. Xue F., Huang Z., Su H., C. Yang Y., C. Jiang Z., L. Lu X., Yuan J., Cho S., S. Liu J., H. Liu Z., Ye M., L. Zhang S., M. Weng H., Liu Z., F. Guo Y., J. Wang Z., W. Shen D.. Spontaneous ferromagnetism induced topological transition in EuB6.Phys. Rev. Lett., 2022, 129(16): 166402 https://doi.org/10.1103/PhysRevLett.129.166402
205
Zeng Q., Yi C., Shen J., Wang B., Wei H., Shi Y., Liu E.. Berry curvature induced antisymmetric in-plane magneto-transport in magnetic Weyl EuB6.Appl. Phys. Lett., 2022, 121(16): 162405 https://doi.org/10.1063/5.0114252
206
Chen B., H. Yang J., D. Wang H., Imai M., Ohta H., Michioka C., Yoshimura K., H. Fang M.. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2.J. Phys. Soc. Jpn., 2013, 82(12): 124711 https://doi.org/10.7566/JPSJ.82.124711
207
Zhang Y., Lu H., Zhu X., Tan S., Feng W., Liu Q., Zhang W., Chen Q., Liu Y., Luo X., Xie D., Luo L., Zhang Z., Lai X., of Kondo lattice behavior in a van der Waals itinerant ferromagnet Emergence. Fe3GeTe2.Sci. Adv., 2018, 4(1): eaao6791 https://doi.org/10.1126/sciadv.aao6791
208
Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., Zhang Y.. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2.Nature, 2018, 563(7729): 94 https://doi.org/10.1038/s41586-018-0626-9
Kim K., Seo J., Lee E., T. Ko K., S. Kim B., G. Jang B., M. Ok J., Lee J., J. Jo Y., Kang W., H. Shim J., Kim C., W. Yeom H., Il Min B., J. Yang B., S. Kim J.. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal.Nat. Mater., 2018, 17(9): 794 https://doi.org/10.1038/s41563-018-0132-3
211
J. Deiseroth H., Aleksandrov K., Reiner C., Kienle L., K. Kremer R.. Fe3GeTe2 and Ni3GeTe2 – two new layered transition‐metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties.Eur. J. Inorg. Chem., 2006, 2006(8): 1561 https://doi.org/10.1002/ejic.200501020
212
Yi J., Zhuang H., Zou Q., Wu Z., Cao G., Tang S., A. Calder S., R. C. Kent P., Mandrus D., Gai Z.. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2.2D Mater., 2016, 4: 011005 https://doi.org/10.1088/2053-1583/4/1/011005
213
Wang Y., Xian C., Wang J., Liu B., Ling L., Zhang L., Cao L., Qu Z., Xiong Y.. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2.Phys. Rev. B, 2017, 96(13): 134428 https://doi.org/10.1103/PhysRevB.96.134428
214
Ke J., Yang M., Xia W., Zhu H., Liu C., Chen R., Dong C., Liu W., Shi M., Guo Y., Wang J.. Magnetic and magneto-transport studies of two-dimensional ferromagnetic compound Fe3GeTe2.J. Phys.: Condens. Matter, 2020, 32(40): 405805 https://doi.org/10.1088/1361-648X/ab9bc9
215
Feng H., Li Y., Shi Y., Y. Xie H., Li Y., Xu Y.. Resistance anomaly and linear magnetoresistance in thin flakes of itinerant ferromagnet Fe3GeTe2.Chin. Phys. Lett., 2022, 39(7): 077501 https://doi.org/10.1088/0256-307X/39/7/077501
216
Xu J., A. Phelan W., L. Chien C.. Large anomalous Nernst effect in a van der Waals ferromagnet Fe3GeTe2.Nano Lett., 2019, 19(11): 8250 https://doi.org/10.1021/acs.nanolett.9b03739
217
Fei Z., Huang B., Malinowski P., Wang W., Song T., Sanchez J., Yao W., Xiao D., Zhu X., F. May A., Wu W., H. Cobden D., H. Chu J., Xu X.. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2.Nat. Mater., 2018, 17(9): 778 https://doi.org/10.1038/s41563-018-0149-7
218
Li Q., Yang M., Gong C., V. Chopdekar R., T. N’Diaye A., Turner J., Chen G., Scholl A., Shafer P., Arenholz E., K. Schmid A., Wang S., Liu K., Gao N., S. Admasu A., W. Cheong S., Hwang C., Li J., Wang F., Zhang X., Qiu Z.. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature.Nano Lett., 2018, 18(9): 5974 https://doi.org/10.1021/acs.nanolett.8b02806
219
Tan C., Lee J., G. Jung S., Park T., Albarakati S., Partridge J., R. Field M., G. McCulloch D., Wang L., Lee C.. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2.Nat. Commun., 2018, 9(1): 1554 https://doi.org/10.1038/s41467-018-04018-w
220
Wang X., Tang J., Xia X., He C., Zhang J., Liu Y., Wan C., Fang C., Guo C., Yang W., Guang Y., Zhang X., Xu H., Wei J., Liao M., Lu X., Feng J., Li X., Peng Y., Wei H., Yang R., Shi D., Zhang X., Han Z., Zhang Z., Zhang G., Yu G., Han X.. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2.Sci. Adv., 2019, 5(8): eaaw8904 https://doi.org/10.1126/sciadv.aaw8904
221
Y. Park S., S. Kim D., Liu Y., Hwang J., Kim Y., Kim W., Y. Kim J., Petrovic C., Hwang C., K. Mo S., J. Kim H., C. Min B., C. Koo H., Chang J., Jang C., W. Choi J., Ryu H.. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping.Nano Lett., 2020, 20(1): 95 https://doi.org/10.1021/acs.nanolett.9b03316
222
Wang H., Liu Y., Wu P., Hou W., Jiang Y., Li X., Pandey C., Chen D., Yang Q., Wang H., Wei D., Lei N., Kang W., Wen L., Nie T., Zhao W., L. Wang K.. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der Waals Fe3GeTe2 tailored by a topological insulator.ACS Nano, 2020, 14(8): 10045 https://doi.org/10.1021/acsnano.0c03152
223
K. Park I., Gong C., Kim K., Lee G.. Controlling interlayer magnetic coupling in the two-dimensional magnet Fe3GeTe2.Phys. Rev. B, 2022, 105(1): 014406 https://doi.org/10.1103/PhysRevB.105.014406
224
P. Wang H., S. Wu D., G. Shi Y., L. Wang N.. Anisotropic transport and optical spectroscopy study on antiferromagnetic triangular lattice EuCd2As2: An interplay between magnetism and charge transport properties.Phys. Rev. B, 2016, 94(4): 045112 https://doi.org/10.1103/PhysRevB.94.045112
225
C. Rahn M., R. Soh J., Francoual S., S. I. Veiga L., Strempfer J., Mardegan J., Y. Yan D., F. Guo Y., G. Shi Y., T. Boothroyd A.. Coupling of magnetic order and charge transport in the candidate Dirac semimetal EuCd2As2.Phys. Rev. B, 2018, 97(21): 214422 https://doi.org/10.1103/PhysRevB.97.214422
226
M. Taddei K., Yin L., D. Sanjeewa L., Li Y., Xing J., dela Cruz C., Phelan D., S. Sefat A., S. Parker D.. Single pair of Weyl nodes in the spin-canted structure of EuCd2As2.Phys. Rev. B, 2022, 105(14): L140401 https://doi.org/10.1103/PhysRevB.105.L140401
227
Ma J., Wang H., Nie S., Yi C., Xu Y., Li H., Jandke J., Wulfhekel W., Huang Y., West D., Richard P., Chikina A., N. Strocov V., Mesot J., Weng H., Zhang S., Shi Y., Qian T., Shi M., Ding H.. Emergence of nontrivial low-energy Dirac fermions in antiferromagnetic EuCd2As2.Adv. Mater., 2020, 32(14): 1907565 https://doi.org/10.1002/adma.201907565
228
Cao X., X. Yu J., Leng P., Yi C., Chen X., Yang Y., Liu S., Kong L., Li Z., Dong X., Shi Y., Bibes M., Peng R., Zang J., Xiu F.. Giant nonlinear anomalous Hall effect induced by spin-dependent band structure evolution.Phys. Rev. Res., 2022, 4(2): 023100 https://doi.org/10.1103/PhysRevResearch.4.023100
229
Schellenberg I., Pfannenschmidt U., Eul M., Schwickert C., Pöttgen R., A121Sb and 151Eu Mössbauer spectroscopic investigation of EuCd2X2 (X = P. Sb) and YbCd2Sb2.Z. Anorg. Allg. Chem., 2011, 637(12): 1863 https://doi.org/10.1002/zaac.201100179
230
L. Wang L., H. Jo N., Kuthanazhi B., Wu Y., J. McQueeney R., Kaminski A., C. Canfield P.. Single pair of Weyl fermions in the half-metallic semimetal EuCd2As2.Phys. Rev. B, 2019, 99(24): 245147 https://doi.org/10.1103/PhysRevB.99.245147
231
R. Soh J., Donnerer C., M. Hughes K., Schierle E., Weschke E., Prabhakaran D., T. Boothroyd A.. Magnetic and electronic structure of the layered rare-earth pnictide EuCd2Sb2.Phys. Rev. B, 2018, 98(6): 064419 https://doi.org/10.1103/PhysRevB.98.064419
232
Krishna J., Nautiyal T., Maitra T.. First-principles study of electronic structure, transport, and optical properties of EuCd2As2.Phys. Rev. B, 2018, 98(12): 125110 https://doi.org/10.1103/PhysRevB.98.125110
233
Sun Y., Li Y., Li S., Yi C., Deng H., Du X., Liu L., Zhu C., Li Y., Wang Z., Mao H., Shi Y., Wu R.. Experimental evidence for field-induced metamagnetic transition of EuCd2As2.J. Rare Earths, 2022, 40(10): 1606 https://doi.org/10.1016/j.jre.2021.08.002
234
Hua G., Nie S., Song Z., Yu R., Xu G., Yao K.. Dirac semimetal in type-IV magnetic space groups.Phys. Rev. B, 2018, 98(20): 201116 https://doi.org/10.1103/PhysRevB.98.201116
235
Schindler F., M. Cook A., G. Vergniory M., Wang Z., S. P. Parkin S., A. Bernevig B., Neupert T.. Higher-order topological insulators.Sci. Adv., 2018, 4(6): eaat0346 https://doi.org/10.1126/sciadv.aat0346
236
R. Soh J., de Juan F., G. Vergniory M., B. M. Schröter N., C. Rahn M., Y. Yan D., Jiang J., Bristow M., A. Reiss P., N. Blandy J., F. Guo Y., G. Shi Y., K. Kim T., McCollam A., H. Simon S., Chen Y., I. Coldea A., T. Boothroyd A.. Ideal Weyl semimetal induced by magnetic exchange.Phys. Rev. B, 2019, 100(20): 201102 https://doi.org/10.1103/PhysRevB.100.201102
237
A. Fenner L., A. Dee A., S. Wills A.. Non-collinearity and spin frustration in the itinerant Kagomé ferromagnet Fe3Sn2.J. Phys.: Condens. Matter, 2009, 21(45): 452202 https://doi.org/10.1088/0953-8984/21/45/452202
238
Ye L., Kang M., Liu J., von Cube F., R. Wicker C., Suzuki T., Jozwiak C., Bostwick A., Rotenberg E., C. Bell D., Fu L., Comin R., G. Checkelsky J.. Massive Dirac fermions in a ferromagnetic Kagomé metal.Nature, 2018, 555(7698): 638 https://doi.org/10.1038/nature25987
239
Malaman B., Roques B., Courtois A., Protas J.. Structure cristalline du stannure de fer Fe3Sn2.Acta Crystallogr. B, 1976, 32(5): 1348 https://doi.org/10.1107/S0567740876005323
Malaman B., Fruchart D., L. Caer G.. Magnetic properties of Fe3Sn2 (II): Neutron diffraction study (and Mossbauer effect).J. Phys. F Met. Phys., 1978, 8(11): 2389 https://doi.org/10.1088/0305-4608/8/11/022
242
Le Caer G., Malaman B., Haggstrom L., Ericsson T.. Magnetic properties of Fe3Sn2 (III): A 119Sn Mossbauer study.J. Phys. F Met. Phys., 1979, 9(9): 1905 https://doi.org/10.1088/0305-4608/9/9/020
243
Lin Z., H. Choi J., Zhang Q., Qin W., Yi S., Wang P., Li L., Wang Y., Zhang H., Sun Z., Wei L., Zhang S., Guo T., Lu Q., H. Cho J., Zeng C., Zhang Z.. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 Kagomé lattices.Phys. Rev. Lett., 2018, 121(9): 096401 https://doi.org/10.1103/PhysRevLett.121.096401
244
X. Yin J., S. Zhang S., Li H., Jiang K., Chang G., Zhang B., Lian B., Xiang C., Belopolski I., Zheng H., A. Cochran T., Y. Xu S., Bian G., Liu K., R. Chang T., Lin H., Y. Lu Z., Wang Z., Jia S., Wang W., Z. Hasan M.. Giant and anisotropic many-body spin−orbit tunability in a strongly correlated Kagomé magnet.Nature, 2018, 562(7725): 91 https://doi.org/10.1038/s41586-018-0502-7
245
Wang Q., Sun S., Zhang X., Pang F., Lei H.. Anomalous Hall effect in a ferromagnetic Fe3Sn2 single crystal with a geometrically frustrated Fe bilayer Kagomé lattice.Phys. Rev. B, 2016, 94(7): 075135 https://doi.org/10.1103/PhysRevB.94.075135
246
P. Hou Z., Ding B., Li H., Z. Xu G., H. Wang W., H. Wu G.. Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device.Acta Phys. Sin., 2018, 67(13): 137509 https://doi.org/10.7498/aps.67.20180419
247
Li H., Ding B., Chen J., Li Z., Hou Z., Liu E., Zhang H., Xi X., Wu G., Wang W.. Large topological Hall effect in a geometrically frustrated Kagomé magnet Fe3Sn2.Appl. Phys. Lett., 2019, 114(19): 192408 https://doi.org/10.1063/1.5088173
248
D. O’Neill C., S. Wills A., D. Huxley A.. Possible topological contribution to the anomalous Hall effect of the noncollinear ferromagnet Fe3Sn2.Phys. Rev. B, 2019, 100(17): 174420 https://doi.org/10.1103/PhysRevB.100.174420
249
Wang Q., Yin Q., Lei H.. Giant topological Hall effect of ferromagnetic Kagomé metal Fe3Sn2.Chin. Phys. B, 2020, 29(1): 017101 https://doi.org/10.1088/1674-1056/ab5fbc
250
Hou Z., Ren W., Ding B., Xu G., Wang Y., Yang B., Zhang Q., Zhang Y., Liu E., Xu F., Wang W., Wu G., Zhang X., Shen B., Zhang Z.. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated Kagomé magnet with uniaxial magnetic anisotropy.Adv. Mater., 2017, 29(29): 1701144 https://doi.org/10.1002/adma.201701144
251
Hou Z., Zhang Q., Xu G., Gong C., Ding B., Wang Y., Li H., Liu E., Xu F., Zhang H., Yao Y., Wu G., X. Zhang X., Wang W.. Creation of single chain of nanoscale skyrmion bubbles with record-high temperature stability in a geometrically confined nanostripe.Nano Lett., 2018, 18(2): 1274 https://doi.org/10.1021/acs.nanolett.7b04900
252
Gao L., Shen S., Wang Q., Shi W., Zhao Y., Li C., Cao W., Pei C., Y. Ge J., Li G., Li J., Chen Y., Yan S., Qi Y., Anomalous Hall effect in ferrimagnetic metal RMn6Sn6 (R = Tb. Ho) with clean Mn Kagomé lattice.Appl. Phys. Lett., 2021, 119(9): 092405 https://doi.org/10.1063/5.0061260
253
X. Yin J., Ma W., A. Cochran T., Xu X., S. Zhang S., J. Tien H., Shumiya N., Cheng G., Jiang K., Lian B., Song Z., Chang G., Belopolski I., Multer D., Litskevich M., J. Cheng Z., P. Yang X., Swidler B., Zhou H., Lin H., Neupert T., Wang Z., Yao N., R. Chang T., Jia S., Zahid Hasan M.. Quantum-limit Chern topological magnetism in TbMn6Sn6.Nature, 2020, 583(7817): 533 https://doi.org/10.1038/s41586-020-2482-7
254
Chen D., Le C., Fu C., Lin H., Schnelle W., Sun Y., Felser C.. Large anomalous Hall effect in the Kagomé ferromagnet LiMn6Sn6.Phys. Rev. B, 2021, 103(14): 144410 https://doi.org/10.1103/PhysRevB.103.144410
255
C. El Idrissi B., Venturini G., Malaman B.. Crystal structures of RFe6Sn6 (R = Sc, Y, Gd−Tm, Lu) rare-earth iron stannides.Mater. Res. Bull., 1991, 26(12): 1331 https://doi.org/10.1016/0025-5408(91)90149-G
256
Venturini G., C. E. Idrissi B., Malaman B., Magnetic properties of RMn6Sn6 (R = Sc. Lu) compounds with HfFe6Ge6 type structure.J. Magn. Magn. Mater., 1991, 94(1−2): 35 https://doi.org/10.1016/0304-8853(91)90108-M
257
J. Ghimire N., L. Dally R., Poudel L., C. Jones D., Michel D., T. Magar N., Bleuel M., A. McGuire M., S. Jiang J., F. Mitchell J., W. Lynn J., I. Mazin I.. Competing magnetic phases and fluctuation-driven scalar spin chirality in the Kagomé metal YMn6Sn6.Sci. Adv., 2020, 6(51): eabe2680 https://doi.org/10.1126/sciadv.abe2680
258
Ma W., Xu X., X. Yin J., Yang H., Zhou H., J. Cheng Z., Huang Y., Qu Z., Wang F., Z. Hasan M., Jia S., Rareearth engineering in RMn6Sn6 (R = Gd−Tm. Lu) topological Kagomé magnets.Phys. Rev. Lett., 2021, 126(24): 246602 https://doi.org/10.1103/PhysRevLett.126.246602
259
Li M., Wang Q., Wang G., Yuan Z., Song W., Lou R., Liu Z., Huang Y., Liu Z., Lei H., Yin Z., Wang S.. Dirac cone, flat band and saddle point in Kagomé magnet YMn6Sn6.Nat. Commun., 2021, 12(1): 3129 https://doi.org/10.1038/s41467-021-23536-8
260
Gu X., Chen C., S. Wei W., L. Gao L., Y. Liu J., Du X., Pei D., S. Zhou J., Z. Xu R., X. Yin Z., X. Zhao W., D. Li Y., Jozwiak C., Bostwick A., Rotenberg E., Backes D., S. I. Veiga L., Dhesi S., Hesjedal T., van der Laan G., F. Du H., J. Jiang W., P. Qi Y., Li G., J. Shi W., K. Liu Z., L. Chen Y., X. Yang L., Robust Kagomé electronic structure in the topological quantum magnets XMn6Sn6 (X=Dy. Gd, Y).Phys. Rev. B, 2022, 105(15): 155108 https://doi.org/10.1103/PhysRevB.105.155108
261
Roychowdhury S., M. Ochs A., N. Guin S., Samanta K., Noky J., Shekhar C., G. Vergniory M., E. Goldberger J., Felser C.. Large room temperature anomalous transverse thermoelectric effect in Kagomé antiferromagnet YMn6Sn6.Adv. Mater., 2022, 34(40): e2201350 https://doi.org/10.1002/adma.202201350
262
Dhakal G., Cheenicode Kabeer F., K. Pathak A., Kabir F., Poudel N., Filippone R., Casey J., Pradhan Sakhya A., Regmi S., Sims C., Dimitri K., Manfrinetti P., Gofryk K., M. Oppeneer P., Neupane M.. Anisotropically large anomalous and topological Hall effect in a Kagomé magnet.Phys. Rev. B, 2021, 104(16): L161115 https://doi.org/10.1103/PhysRevB.104.L161115
263
Wang Q., J. Neubauer K., Duan C., Yin Q., Fujitsu S., Hosono H., Ye F., Zhang R., Chi S., Krycka K., Lei H., Dai P.. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic Kagomé antiferromagnetic compound YMn6Sn6.Phys. Rev. B, 2021, 103: 014416 https://doi.org/10.1103/PhysRevB.103.014416
264
Kabir F., Filippone R., Dhakal G., Lee Y., Poudel N., Casey J., P. Sakhya A., Regmi S., Smith R., Manfrinetti P., Ke L., Gofryk K., Neupane M., K. Pathak A.. Unusual magnetic and transport properties in HoMn6Sn6 Kagomé magnet.Phys. Rev. Mater., 2022, 6(6): 064404 https://doi.org/10.1103/PhysRevMaterials.6.064404
Peng S., Han Y., Pokharel G., Shen J., Li Z., Hashimoto M., Lu D., R. Ortiz B., Luo Y., Li H., Guo M., Wang B., Cui S., Sun Z., Qiao Z., D. Wilson S., He J., RealizingKagomé band structure in two-dimensional Kagomé surface states of RV6Sn6 (R=Gd. Ho).Phys. Rev. Lett., 2021, 127(26): 266401 https://doi.org/10.1103/PhysRevLett.127.266401
267
Hu Y., Wu X., Yang Y., Gao S., C. Plumb N., P. Schnyder A., Xie W., Ma J., Shi M.. Tunable topological Dirac surface states and van Hove singularities in Kagomé metal GdV6Sn6.Sci. Adv., 2022, 8: eadd2024 https://doi.org/10.1126/sciadv.add2024
268
Cheng E., Xia W., Shi X., Fang H., Wang C., Xi C., Xu S., C. Peets D., Wang L., Su H., Pi L., Ren W., Wang X., Yu N., Chen Y., Zhao W., Liu Z., Guo Y., Li S.. Magnetism-induced topological transition in EuAs3.Nat. Commun., 2021, 12(1): 6970 https://doi.org/10.1038/s41467-021-26482-7
269
Bauhofer W., Wittmann M., G. v Schnering H., Structure properties of CaAs3. BaAs3 and EuAs3.J. Phys. Chem. Solids, 1981, 42(8): 687 https://doi.org/10.1016/0022-3697(81)90122-0
270
Chattopadhyay T., G. v. Schnering H., J. Brown P.. Neutron diffraction study of the magnetic ordering in EuAs3.J. Magn. Magn. Mater., 1982, 28(3): 247 https://doi.org/10.1016/0304-8853(82)90056-7
271
Chattopadhyay T., J. Brown P.. Field-induced transverse-sine-wave-to-longitudinal-sine-wave transition in EuAs3.Phys. Rev. B, 1988, 38(1): 795 https://doi.org/10.1103/PhysRevB.38.795
272
Chatterji T., D. Liß K., Tschentscher T., Janossy B., Strempfer J., Brückel T.. High-energy non-resonant X-ray magnetic scattering from EuAs3.Solid State Commun., 2004, 131(11): 713 https://doi.org/10.1016/j.ssc.2004.06.026
Bauhofer W., A. McEwen K.. Anisotropic magnetoresistance of the semimetallic antiferromagnet EuAs3.Phys. Rev. B, 1991, 43(16): 13450 https://doi.org/10.1103/PhysRevB.43.13450
275
Elcoro L., J. Wieder B., Song Z., Xu Y., Bradlyn B., A. Bernevig B.. Magnetic topological quantum chemistry.Nat. Commun., 2021, 12(1): 5965 https://doi.org/10.1038/s41467-021-26241-8
276
Xu Y., Elcoro L., D. Song Z., J. Wieder B., G. Vergniory M., Regnault N., Chen Y., Felser C., A. Bernevig B.. High-throughput calculations of magnetic topological materials.Nature, 2020, 586(7831): 702 https://doi.org/10.1038/s41586-020-2837-0
277
Haruki W., H. Chun P., Ashvin V.. Structure and topology of band structures in the 1651 magnetic space groups.Sci. Adv., 2018, 4: eaat8685 https://doi.org/10.1126/sciadv.aat8685
278
Gao J., Guo Z., Weng H., Wang Z., band representations Magnetic. Fu−Kane-like symmetry indicators, and magnetic topological materials.Phys. Rev. B, 2022, 106(3): 035150 https://doi.org/10.1103/PhysRevB.106.035150
279
Choudhary K., F. Garrity K., J. Ghimire N., Anand N., Tavazza F.. High-throughput search for magnetic topological materials using spin−orbit spillage, machine learning, and experiments.Phys. Rev. B, 2021, 103(15): 155131 https://doi.org/10.1103/PhysRevB.103.155131
280
Bouhon A., F. Lange G., J. Slager R.. Topological correspondence between magnetic space group representations and subdimensions.Phys. Rev. B, 2021, 103(24): 245127 https://doi.org/10.1103/PhysRevB.103.245127
281
Gooth J., Bradlyn B., Honnali S., Schindler C., Kumar N., Noky J., Qi Y., Shekhar C., Sun Y., Wang Z., A. Bernevig B., Felser C.. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I.Nature, 2019, 575(7782): 315 https://doi.org/10.1038/s41586-019-1630-4
282
Šmejkal L., H. MacDonald A., Sinova J., Nakatsuji S., Jungwirth T.. Anomalous Hall antiferromagnets.Nat. Rev. Mater., 2022, 7(6): 482 https://doi.org/10.1038/s41578-022-00430-3
Šmejkal L., Sinova J., Jungwirth T.. Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry.Phys. Rev. X, 2022, 12(3): 031042 https://doi.org/10.1103/PhysRevX.12.031042
285
J. Ghimire N., S. Botana A., S. Jiang J., Zhang J., S. Chen Y., F. Mitchell J.. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6.Nat. Commun., 2018, 9(1): 3280 https://doi.org/10.1038/s41467-018-05756-7
286
Šmejkal L., B. Hellenes A., González-Hernández R., Sinova J., Jungwirth T.. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin−momentum coupling.Phys. Rev. X, 2022, 12(1): 011028 https://doi.org/10.1103/PhysRevX.12.011028
287
Feng Z., Zhou X., Šmejkal L., Wu L., Zhu Z., Guo H., González-Hernández R., Wang X., Yan H., Qin P., Zhang X., Wu H., Chen H., Meng Z., Liu L., Xia Z., Sinova J., Jungwirth T., Liu Z.. An anomalous Hall effect in altermagnetic ruthenium dioxide.Nat. Electron., 2022, 5(11): 735 https://doi.org/10.1038/s41928-022-00866-z
288
Schrunk B., Kushnirenko Y., Kuthanazhi B., Ahn J., L. Wang L., O’Leary E., Lee K., Eaton A., Fedorov A., Lou R., Voroshnin V., J. Clark O., Sanchez-Barriga J., L. Bud’ko S., J. Slager R., C. Canfield P., Kaminski A.. Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet.Nature, 2022, 603(7902): 610 https://doi.org/10.1038/s41586-022-04412-x
289
Karube S., Tanaka T., Sugawara D., Kadoguchi N., Kohda M., Nitta J.. Observation of spin-splitter torque in collinear antiferromagnetic RuO2.Phys. Rev. Lett., 2022, 129(13): 137201 https://doi.org/10.1103/PhysRevLett.129.137201
290
Bai H., Han L., Y. Feng X., J. Zhou Y., X. Su R., Wang Q., Y. Liao L., X. Zhu W., Z. Chen X., Pan F., L. Fan X., Song C.. Observation of spin splitting torque in a collinear antiferromagnet RuO2.Phys. Rev. Lett., 2022, 128(19): 197202 https://doi.org/10.1103/PhysRevLett.128.197202
291
F. Shao D., H. Zhang S., Li M., B. Eom C., Y. Tsymbal E.. Spin-neutral currents for spintronics.Nat. Commun., 2021, 12(1): 7061 https://doi.org/10.1038/s41467-021-26915-3
292
González-Hernández R., Smejkal L., Vyborny K., Yahagi Y., Sinova J., Jungwirth T., Zelezny J.. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism.Phys. Rev. Lett., 2021, 126(12): 127701 https://doi.org/10.1103/PhysRevLett.126.127701