Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (2): 21304   https://doi.org/10.1007/s11467-022-1250-6
  本期目录
Intrinsic magnetic topological materials
Yuan Wang, Fayuan Zhang, Meng Zeng, Hongyi Sun, Zhanyang Hao, Yongqing Cai, Hongtao Rong, Chengcheng Zhang, Cai Liu, Xiaoming Ma, Le Wang, Shu Guo, Junhao Lin, Qihang Liu, Chang Liu(), Chaoyu Chen()
Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
 全文: PDF(12634 KB)   HTML
Abstract

Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials.

Key wordsintrinsic magnetic topological insulator    magnetic topological metals    magnetic Weyl semimetal    topological surface states    magnetic gap
收稿日期: 2022-12-18      出版日期: 2023-02-28
Corresponding Author(s): Chang Liu,Chaoyu Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(2): 21304.
Yuan Wang, Fayuan Zhang, Meng Zeng, Hongyi Sun, Zhanyang Hao, Yongqing Cai, Hongtao Rong, Chengcheng Zhang, Cai Liu, Xiaoming Ma, Le Wang, Shu Guo, Junhao Lin, Qihang Liu, Chang Liu, Chaoyu Chen. Intrinsic magnetic topological materials. Front. Phys. , 2023, 18(2): 21304.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1250-6
https://academic.hep.com.cn/fop/CN/Y2023/V18/I2/21304
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
1 L. Kane C., J. Mele E.. Z2 topological order and the quantum spin Hall effect.Phys. Rev. Lett., 2005, 95(14): 146802
https://doi.org/10.1103/PhysRevLett.95.146802
2 Fu L., L. Kane C.. Topological insulators with inversion symmetry.Phys. Rev. B, 2007, 76(4): 045302
https://doi.org/10.1103/PhysRevB.76.045302
3 Fu L., L. Kane C., J. Mele E.. Topological insulators in three dimensions.Phys. Rev. Lett., 2007, 98: 106803
https://doi.org/10.1103/PhysRevLett.98.106803
4 E. Moore J., Balents L.. Topological invariants of time-reversal-invariant band structures.Phys. Rev. B, 2007, 75(12): 121306
https://doi.org/10.1103/PhysRevB.75.121306
5 J. Zhang H., X. Liu C., L. Qi X., Dai X., Fang Z., C. Zhang S., Topological insulators in Bi2Se3. Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface.Nat. Phys., 2009, 5(6): 438
https://doi.org/10.1038/nphys1270
6 A. Bernevig B., L. Hughes T., C. Zhang S.. Quantum spin Hall effect and topological phase transition in HgTe quantum wells.Science, 2006, 314(5806): 1757
https://doi.org/10.1126/science.1133734
7 König M., Wiedmann S., Brune C., Roth A., Buhmann H., W. Molenkamp L., L. Qi X., C. Zhang S.. Quantum spin hall insulator state in HgTe quantum wells.Science, 2007, 318(5851): 766
https://doi.org/10.1126/science.1148047
8 Hsieh D., Qian D., Wray L., Xia Y., S. Hor Y., J. Cava R., Z. Hasan M.. A topological Dirac insulator in a quantum spin Hall phase.Nature, 2008, 452(7190): 970
https://doi.org/10.1038/nature06843
9 L. Chen Y., G. Analytis J., H. Chu J., K. Liu Z., K. Mo S., L. Qi X., J. Zhang H., H. Lu D., Dai X., Fang Z., C. Zhang S., R. Fisher I., Hussain Z., X. Shen Z., realization of a three-dimensional topological insulator Experimental. Bi2Te3.Science, 2009, 325(5937): 178
https://doi.org/10.1126/science.1173034
10 Hsieh D., Xia Y., Qian D., Wray L., H. Dil J., Meier F., Osterwalder J., Patthey L., G. Checkelsky J., P. Ong N., V. Fedorov A., Lin H., Bansil A., Grauer D., S. Hor Y., J. Cava R., Z. Hasan M.. A tunable topological insulator in the spin helical Dirac transport regime.Nature, 2009, 460(7259): 1101
https://doi.org/10.1038/nature08234
11 Xia Y., Qian D., Hsieh D., Wray L., Pal A., Lin H., Bansil A., Grauer D., S. Hor Y., J. Cava R., Z. Hasan M.. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface.Nat. Phys., 2009, 5(6): 398
https://doi.org/10.1038/nphys1274
12 Valla T., H. Pan Z., Gardner D., S. Lee Y., Chu S.. Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator.Phys. Rev. Lett., 2012, 108(11): 117601
https://doi.org/10.1103/PhysRevLett.108.117601
13 Chen C., He S., Weng H., Zhang W., Zhao L., Liu H., Jia X., Mou D., Liu S., He J., Peng Y., Feng Y., Xie Z., Liu G., Dong X., Zhang J., Wang X., Peng Q., Wang Z., Zhang S., Yang F., Chen C., Xu Z., Dai X., Fang Z., J. Zhou X.. Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment.Proc. Natl. Acad. Sci. USA, 2012, 109(10): 3694
https://doi.org/10.1073/pnas.1115555109
14 A. Wray L., Y. Xu S., Xia Y., Hsieh D., V. Fedorov A., S. Hor Y., J. Cava R., Bansil A., Lin H., Z. Hasan M.. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations.Nat. Phys., 2011, 7: 32
https://doi.org/10.1038/nphys1838
15 Z. Chang C., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., L. Wang L., Q. Ji Z., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., C. Zhang S., He K., Wang Y., Lu L., C. Ma X., K. Xue Q.. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator.Science, 2013, 340(6129): 167
https://doi.org/10.1126/science.1234414
16 Yu R., Zhang W., J. Zhang H., C. Zhang S., Dai X., Fang Z.. Quantized anomalous Hall effect in magnetic topological insulators.Science, 2010, 329(5987): 61
https://doi.org/10.1126/science.1187485
17 P. Armitage N., J. Mele E., Vishwanath A.. Weyl and Dirac semimetals in three-dimensional solids.Rev. Mod. Phys., 2018, 90(1): 015001
https://doi.org/10.1103/RevModPhys.90.015001
18 A. Burkov A., Balents L.. Weyl semimetal in a topological insulator multilayer.Phys. Rev. Lett., 2011, 107(12): 127205
https://doi.org/10.1103/PhysRevLett.107.127205
19 A. Burkov A., D. Hook M., Balents L.. Topological nodal semimetals.Phys. Rev. B, 2011, 84(23): 235126
https://doi.org/10.1103/PhysRevB.84.235126
20 G. Wan X., M. Turner A., Vishwanath A., Y. Savrasov S.. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates.Phys. Rev. B, 2011, 83(20): 205101
https://doi.org/10.1103/PhysRevB.83.205101
21 Wang Z., Sun Y., Q. Chen X., Franchini C., Xu G., Weng H., Dai X., Fang Z., Dirac semimetal,topological phase transitions in A3Bi (A=Na.Rb).Phys. Rev. B, 2012, 85(19): 195320
https://doi.org/10.1103/PhysRevB.85.195320
22 M. Young S., Zaheer S., C. Y. Teo J., L. Kane C., J. Mele E., M. Rappe A.. Dirac semimetal in three dimensions.Phys. Rev. Lett., 2012, 108(14): 140405
https://doi.org/10.1103/PhysRevLett.108.140405
23 J. Wang Z., M. Weng H., S. Wu Q., Dai X., Fang Z.. Three-dimensional Dirac semimetal and quantum transport in Cd3As2.Phys. Rev. B, 2013, 88(12): 125427
https://doi.org/10.1103/PhysRevB.88.125427
24 Ning W., Mao Z.. Recent advancements in the study of intrinsic magnetic topological insulators and magnetic Weyl semimetals.APL Mater., 2020, 8(9): 090701
https://doi.org/10.1063/5.0015328
25 Z. Hasan M., Chang G., Belopolski I., Bian G., Y. Xu S., X. Yin J.. Dirac and high-fold chiral fermions in topological quantum matter.Nat. Rev. Mater., 2021, 6(9): 784
https://doi.org/10.1038/s41578-021-00301-3
26 A. Bernevig B., Felser C., Beidenkopf H.. Progress and prospects in magnetic topological materials.Nature, 2022, 603(7899): 41
https://doi.org/10.1038/s41586-021-04105-x
27 Tang F., C. Po H., Vishwanath A., Wan X.. Comprehensive search for topological materials using symmetry indicators.Nature, 2019, 566(7745): 486
https://doi.org/10.1038/s41586-019-0937-5
28 G. Vergniory M., Elcoro L., Felser C., Regnault N., A. Bernevig B., Wang Z.. A complete catalogue of high-quality topological materials.Nature, 2019, 566(7745): 480
https://doi.org/10.1038/s41586-019-0954-4
29 Zhang T., Jiang Y., Song Z., Huang H., He Y., Fang Z., Weng H., Fang C.. Catalogue of topological electronic materials.Nature, 2019, 566(7745): 475
https://doi.org/10.1038/s41586-019-0944-6
30 Liu C., R. Liu X.. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators.Acta Phys. Sin., 2019, 68(22): 227901
https://doi.org/10.7498/aps.68.20191450
31 Ando Y.. Topological insulator materials.J. Phys. Soc. Jpn., 2013, 82(10): 102001
https://doi.org/10.7566/JPSJ.82.102001
32 A. Sobota J., He Y., X. Shen Z.. Angle-resolved photoemission studies of quantum materials.Rev. Mod. Phys., 2021, 93(2): 025006
https://doi.org/10.1103/RevModPhys.93.025006
33 Wang Y., On the topological surface states of the intrinsic magnetic topological insulator Mn−Bi−Te family, arXiv: 2211.04017 (2022)
34 Zhao Y., Liu Q.. Routes to realize the axion-insulator phase in MnBi2Te4(Bi2Te3)n family.Appl. Phys. Lett., 2021, 119(6): 060502
https://doi.org/10.1063/5.0059447
35 Wang P., Ge J., Li J., Liu Y., Xu Y., Wang J.. Intrinsic magnetic topological insulators.Innovation, 2021, 2(2): 100098
https://doi.org/10.1016/j.xinn.2021.100098
36 Li Y., Xu Y.. First-principles discovery of novel quantum physics and materials: From theory to experiment.Comput. Mater. Sci., 2021, 190: 110262
https://doi.org/10.1016/j.commatsci.2020.110262
37 Y. Chen C., Surface state energy gap of magnetic origin and “semi magnetic topological insulator”, Physics 50, 267 (2021) (in Chinese)
38 He K.. MnBi2Te4-family intrinsic magnetic topological materials.npj Quantum Mater., 2020, 5: 90
https://doi.org/10.1038/s41535-020-00291-5
39 H. Zhan G., Q Wang H., J. Zhang H.. Antiferromagnetic topological insulators and axion insulators — MnBi2Te4 family magnetic systems.Physics, 2020, 49(12): 817
https://doi.org/10.7693/wl20201203(2020
40 Kida T., A. Fenner L., A. Dee A., Terasaki I., Hagiwara M., S. Wills A.. The giant anomalous Hall effect in the ferromagnet Fe3Sn2 — a frustrated Kagomé metal.J. Phys.: Condens. Matter, 2011, 23(11): 112205
https://doi.org/10.1088/0953-8984/23/11/112205
41 D. M. Haldane F.. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”.Phys. Rev. Lett., 1988, 61(18): 2015
https://doi.org/10.1103/PhysRevLett.61.2015
42 Y. Chang P., Erten O., Coleman P.. Möbius Kondo insulators.Nat. Phys., 2017, 13(8): 794
https://doi.org/10.1038/nphys4092
43 Shiozaki K., Sato M., Gomi K.. Z2 topology in nonsymmorphic crystalline insulators: Möbius twist in surface states.Phys. Rev. B, 2015, 91(15): 155120
https://doi.org/10.1103/PhysRevB.91.155120
44 X. Zhang R., Wu F., Das Sarma S.. Mobius insulator and higher-order topology in MnBi2nTe3n+1.Phys. Rev. Lett., 2020, 124(13): 136407
https://doi.org/10.1103/PhysRevLett.124.136407
45 Liu C., Wang Y., Li H., Wu Y., Li Y., Li J., He K., Xu Y., Zhang J., Wang Y.. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator.Nat. Mater., 2020, 19(5): 522
https://doi.org/10.1038/s41563-019-0573-3
46 Z. Chang C., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., L. Wang L., Q. Ji Z., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., C. Zhang S., He K., Wang Y., Lu L., C. Ma X., K. Xue Q.. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator.Science, 2013, 340(6129): 167
https://doi.org/10.1126/science.1234414
47 Wu L., Salehi M., Koirala N., Moon J., Oh S., P. Armitage N.. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator.Science, 2016, 354(6316): 1124
https://doi.org/10.1126/science.aaf5541
48 Liu E., Sun Y., Kumar N., Muechler L., Sun A., Jiao L., Y. Yang S., Liu D., Liang A., Xu Q., Kroder J., Süß V., Borrmann H., Shekhar C., Wang Z., Xi C., Wang W., Schnelle W., Wirth S., Chen Y., T. B. Goennenwein S., Felser C.. Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal.Nat. Phys., 2018, 14(11): 1125
https://doi.org/10.1038/s41567-018-0234-5
49 L. Zhang C., Y. Xu S., Belopolski I., Yuan Z., Lin Z., Tong B., Bian G., Alidoust N., C. Lee C., M. Huang S., R. Chang T., Chang G., H. Hsu C., T. Jeng H., Neupane M., S. Sanchez D., Zheng H., Wang J., Lin H., Zhang C., Z. Lu H., Q. Shen S., Neupert T., Zahid Hasan M., Jia S.. Signatures of the Adler−Bell−Jackiw chiral anomaly in a Weyl fermion semimetal.Nat. Commun., 2016, 7(1): 10735
https://doi.org/10.1038/ncomms10735
50 N. Guin S., Vir P., Zhang Y., Kumar N., J. Watzman S., Fu C., Liu E., Manna K., Schnelle W., Gooth J., Shekhar C., Sun Y., Felser C.. Zero-field Nernst effect in a ferromagnetic Kagomé-lattice Weyl-semimetal Co3Sn2S2.Adv. Mater., 2019, 31(25): 1806622
https://doi.org/10.1002/adma.201806622
51 K. Liu E., Zhang S.. Topologically enhanced zero-field transverse Nernst thermoelectric effect in magnetic topological semimetals.Sci. China Phys. Mech. &Astron., 2019, 49(12): 127001
https://doi.org/10.1360/SSPMA-2019-0367
52 S. K. Mong R., M. Essin A., E. Moore J.. Antiferromagnetic topological insulators.Phys. Rev. B, 2010, 81(24): 245209
https://doi.org/10.1103/PhysRevB.81.245209
53 M. Otrokov M., V. Menshchikova T., G. Vergniory M., P. Rusinov I., Yu Vyazovskaya A., M. Koroteev Y., Bihlmayer G., Ernst A., M. Echenique P., Arnau A., V. Chulkov E.. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects.2D Mater., 2017, 4: 025082
https://doi.org/10.1088/2053-1583/aa6bec
54 M. Otrokov M., V. Menshchikova T., P. Rusinov I., G. Vergniory M., M. Kuznetsov V., V. Chulkov E.. Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators.JETP Lett., 2017, 105(5): 297
https://doi.org/10.1134/S0021364017050113
55 Gong Y., Guo J., Li J., Zhu K., Liao M., Liu X., Zhang Q., Gu L., Tang L., Feng X., Zhang D., Li W., Song C., Wang L., Yu P., Chen X., Wang Y., Yao H., Duan W., Xu Y., C. Zhang S., Ma X., K. Xue Q., He K.. Experimental realization of an intrinsic magnetic topological insulator.Chin. Phys. Lett., 2019, 36(7): 076801
https://doi.org/10.1088/0256-307X/36/7/076801
56 Zhang D., Shi M., Zhu T., Xing D., Zhang H., Wang J.. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect.Phys. Rev. Lett., 2019, 122(20): 206401
https://doi.org/10.1103/PhysRevLett.122.206401
57 M. Otrokov M., P. Rusinov I., Blanco-Rey M., Hoffmann M., Y. Vyazovskaya A., V. Eremeev S., Ernst A., M. Echenique P., Arnau A., V. Chulkov E.. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films.Phys. Rev. Lett., 2019, 122(10): 107202
https://doi.org/10.1103/PhysRevLett.122.107202
58 Li J., Li Y., Du S., Wang Z., L. Gu B., C. Zhang S., He K., Duan W., Xu Y.. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials.Sci. Adv., 2019, 5(6): eaaw5685
https://doi.org/10.1126/sciadv.aaw5685
59 M. Otrokov M., I. Klimovskikh I., Bentmann H., Estyunin D., Zeugner A., S. Aliev Z., Gaß S., U. B. Wolter A., V. Koroleva A., M. Shikin A., Blanco-Rey M., Hoffmann M., P. Rusinov I., Y. Vyazovskaya A., V. Eremeev S., M. Koroteev Y., M. Kuznetsov V., Freyse F., Sánchez-Barriga J., R. Amiraslanov I., B. Babanly M., T. Mamedov N., A. Abdullayev N., N. Zverev V., Alfonsov A., Kataev V., Büchner B., F. Schwier E., Kumar S., Kimura A., Petaccia L., Di Santo G., C. Vidal R., Schatz S., Kißner K., Ünzelmann M., H. Min C., Moser S., R. F. Peixoto T., Reinert F., Ernst A., M. Echenique P., Isaeva A., V. Chulkov E.. Prediction and observation of an antiferromagnetic topological insulator.Nature, 2019, 576(7787): 416
https://doi.org/10.1038/s41586-019-1840-9
60 S. Aliev Z., R. Amiraslanov I., I. Nasonova D., V. Shevelkov A., A. Abdullayev N., A. Jahangirli Z., N. Orujlu E., M. Otrokov M., T. Mamedov N., B. Babanly M., V. Chulkov E.. Novel ternary layered manganese bismuth tellurides of the MnTe−Bi2Te3 system: Synthesis and crystal structure.J. Alloys Compd., 2019, 789: 443
https://doi.org/10.1016/j.jallcom.2019.03.030
61 Wu J., Liu F., Liu C., Wang Y., Li C., Lu Y., Matsuishi S., Hosono H.. Toward 2D magnets in the (MnBi2Te4)(Bi2Te3)n bulk crystal.Adv. Mater., 2020, 32(23): e2001815
https://doi.org/10.1002/adma.202001815
62 Souchay D., Nentwig M., Günther D., Keilholz S., de Boor J., Zeugner A., Isaeva A., Ruck M., U. B. Wolter A., Büchner B., Oeckler O.. Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials.J. Mater. Chem. C, 2019, 7(32): 9939
https://doi.org/10.1039/C9TC00979E
63 S. Lee D., H. Kim T., H. Park C., Y. Chung C., S. Lim Y., S. Seo W., H. Park H., structure Crystal, of a new layered chalcogenide semiconductor properties. Bi2MnTe4.CrystEngComm, 2013, 15(27): 5532
https://doi.org/10.1039/c3ce40643a
64 Hirahara T., V. Eremeev S., Shirasawa T., Okuyama Y., Kubo T., Nakanishi R., Akiyama R., Takayama A., Hajiri T., I. Ideta S., Matsunami M., Sumida K., Miyamoto K., Takagi Y., Tanaka K., Okuda T., Yokoyama T., I. Kimura S., Hasegawa S., V. Chulkov E.. Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer.Nano Lett., 2017, 17(6): 3493
https://doi.org/10.1021/acs.nanolett.7b00560
65 A. Hagmann J., Li X., Chowdhury S., N. Dong S., Rouvimov S., J. Pookpanratana S., Man Yu K., A. Orlova T., B. Bolin T., U. Segre C., G. Seiler D., A. Richter C., Liu X., Dobrowolska M., K. Furdyna J.. Molecular beam epitaxy growth and structure of self-assembled Bi2Se3/Bi2MnSe4 multilayer heterostructures.New J. Phys., 2017, 19(8): 085002
https://doi.org/10.1088/1367-2630/aa759c
66 Ding L., Hu C., Ye F., Feng E., Ni N., Cao H.. Crystal and magnetic structures of magnetic topological insulators MnBi2Te4 and MnBi4Te7.Phys. Rev. B, 2020, 101(2): 020412
https://doi.org/10.1103/PhysRevB.101.020412
67 Q. Yan J., Zhang Q., Heitmann T., Huang Z., Y. Chen K., G. Cheng J., Wu W., Vaknin D., C. Sales B., J. McQueeney R.. Crystal growth and magnetic structure of MnBi2Te4.Phys. Rev. Mater., 2019, 3(6): 064202
https://doi.org/10.1103/PhysRevMaterials.3.064202
68 Z. Shi M., Lei B., S. Zhu C., H. Ma D., H. Cui J., L. Sun Z., J. Ying J., H. Chen X.. Magnetic and transport properties in the magnetic topological insulators MnBi2Te4(Bi2Te3)n (n=1, 2).Phys. Rev. B, 2019, 100(15): 155144
https://doi.org/10.1103/PhysRevB.100.155144
69 J. Hao Y., Liu P., Feng Y., M. Ma X., F. Schwier E., Arita M., Kumar S., Hu C., Lu R., Zeng M., Wang Y., Hao Z., Y. Sun H., Zhang K., Mei J., Ni N., Wu L., Shimada K., Chen C., Liu Q., Liu C.. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. X, 2019, 9: 041038
https://doi.org/10.1103/PhysRevX.9.041038
70 Hu C., N. Gordon K., Liu P., Liu J., Zhou X., Hao P., Narayan D., Emmanouilidou E., Sun H., Liu Y., Brawer H., P. Ramirez A., Ding L., Cao H., Liu Q., Dessau D., Ni N.. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling.Nat. Commun., 2020, 11(1): 97
https://doi.org/10.1038/s41467-019-13814-x
71 M. Ma X., Chen Z., F. Schwier E., Zhang Y., J. Hao Y., Kumar S., Lu R., Shao J., Jin Y., Zeng M., R. Liu X., Hao Z., Zhang K., Mansuer W., Song C., Wang Y., Zhao B., Liu C., Deng K., Mei J., Shimada K., Zhao Y., Zhou X., Shen B., Huang W., Liu C., Xu H., Chen C.. Hybridization-induced gapped and gapless states on the surface of magnetic topological insulators.Phys. Rev. B, 2020, 102(24): 245136
https://doi.org/10.1103/PhysRevB.102.245136
72 Lu R., Sun H., Kumar S., Wang Y., Gu M., Zeng M., J. Hao Y., Li J., Shao J., M. Ma X., Hao Z., Zhang K., Mansuer W., Mei J., Zhao Y., Liu C., Deng K., Huang W., Shen B., Shimada K., F. Schwier E., Liu C., Liu Q., Chen C.. Half-magnetic topological insulator with magnetization-induced Dirac gap at a selected surface.Phys. Rev. X, 2021, 11(1): 011039
https://doi.org/10.1103/PhysRevX.11.011039
73 J. Chen Y., X. Xu L., H. Li J., W. Li Y., Y. Wang H., F. Zhang C., Li H., Wu Y., J. Liang A., Chen C., W. Jung S., Cacho C., H. Mao Y., Liu S., X. Wang M., F. Guo Y., Xu Y., K. Liu Z., X. Yang L., L. Chen Y.. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. X, 2019, 9(4): 041040
https://doi.org/10.1103/PhysRevX.9.041040
74 Li H., Y. Gao S., F. Duan S., F. Xu Y., J. Zhu K., J. Tian S., C. Gao J., H. Fan W., C. Rao Z., R. Huang J., J. Li J., Y. Yan D., T. Liu Z., L. Liu W., B. Huang Y., L. Li Y., Liu Y., B. Zhang G., Zhang P., Kondo T., Shin S., C. Lei H., G. Shi Y., T. Zhang W., M. Weng H., Qian T., Ding H.. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1.Phys. Rev. X, 2019, 9(4): 041039
https://doi.org/10.1103/PhysRevX.9.041039
75 Liang A., Chen C., Zheng H., Xia W., Huang K., Wei L., Yang H., Chen Y., Zhang X., Xu X., Wang M., Guo Y., Yang L., Liu Z., Chen Y.. Approaching a minimal topological electronic structure in antiferromagnetic topological insulator MnBi2Te4 via surface modification.Nano Lett., 2022, 22(11): 4307
https://doi.org/10.1021/acs.nanolett.1c04930
76 Xu R., Bai Y., Zhou J., Li J., Gu X., Qin N., Yin Z., Du X., Zhang Q., Zhao W., Li Y., Wu Y., Ding C., Wang L., Liang A., Liu Z., Xu Y., Feng X., He K., Chen Y., Yang L.. Evolution of the electronic structure of ultrathin MnBi2Te4 films.Nano Lett., 2022, 22(15): 6320
https://doi.org/10.1021/acs.nanolett.2c02034
77 C. Vidal R., Bentmann H., R. F. Peixoto T., Zeugner A., Moser S., H. Min C., Schatz S., Kißner K., Ünzelmann M., I. Fornari C., B. Vasili H., Valvidares M., Sakamoto K., Mondal D., Fujii J., Vobornik I., Jung S., Cacho C., K. Kim T., J. Koch R., Jozwiak C., Bostwick A., D. Denlinger J., Rotenberg E., Buck J., Hoesch M., Diekmann F., Rohlf S., Kalläne M., Rossnagel K., M. Otrokov M., V. Chulkov E., Ruck M., Isaeva A., Reinert F.. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001).Phys. Rev. B, 2019, 100(12): 121104
https://doi.org/10.1103/PhysRevB.100.121104
78 H. Lee S., Zhu Y., Wang Y., Miao L., Pillsbury T., Yi H., Kempinger S., Hu J., A. Heikes C., Quarterman P., Ratcliff W., A. Borchers J., Zhang H., Ke X., Graf D., Alem N., Z. Chang C., Samarth N., Mao Z.. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. Res., 2019, 1(1): 012011
https://doi.org/10.1103/PhysRevResearch.1.012011
79 Hu Y., Xu L., Shi M., Luo A., Peng S., Y. Wang Z., J. Ying J., Wu T., K. Liu Z., F. Zhang C., L. Chen Y., Xu G., H. Chen X., F. He J.. Universal gapless Dirac cone and tunable topological states in (MnBi2Te4)m(Bi2Te3)n heterostructures.Phys. Rev. B, 2020, 101: 161113(R)
https://doi.org/10.1103/PhysRevB.101.161113
80 Nevola D., X. Li H., Q. Yan J., G. Moore R., N. Lee H., Miao H., D. Johnson P.. Coexistence of surface ferromagnetism and a gapless topological state in MnBi2Te4.Phys. Rev. Lett., 2020, 125(11): 117205
https://doi.org/10.1103/PhysRevLett.125.117205
81 M. Shikin A., A. Estyunin D., I. Klimovskikh I., O. Filnov S., F. Schwier E., Kumar S., Miyamoto K., Okuda T., Kimura A., Kuroda K., Yaji K., Shin S., Takeda Y., Saitoh Y., S. Aliev Z., T. Mamedov N., R. Amiraslanov I., B. Babanly M., M. Otrokov M., V. Eremeev S., V. Chulkov E.. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4.Sci. Rep., 2020, 10(1): 13226
https://doi.org/10.1038/s41598-020-70089-9
82 Swatek P., Wu Y., L. Wang L., Lee K., Schrunk B., Yan J., Kaminski A.. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4.Phys. Rev. B, 2020, 101(16): 161109
https://doi.org/10.1103/PhysRevB.101.161109
83 M. Shikin A., A. Estyunin D., L. Zaitsev N., Glazkova D., I. Klimovskikh I., O. Filnov S., G. Rybkin A., F. Schwier E., Kumar S., Kimura A., Mamedov N., Aliev Z., B. Babanly M., Kokh K., E. Tereshchenko O., M. Otrokov M., V. Chulkov E., A. Zvezdin K., K. Zvezdin A.. Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission and ab initio study.Phys. Rev. B, 2021, 104(11): 115168
https://doi.org/10.1103/PhysRevB.104.115168
84 C. Vidal R., Bentmann H., I. Facio J., Heider T., Kagerer P., I. Fornari C., R. F. Peixoto T., Figgemeier T., Jung S., Cacho C., Buchner B., van den Brink J., M. Schneider C., Plucinski L., F. Schwier E., Shimada K., Richter M., Isaeva A., Reinert F.. Orbital complexity in intrinsic magnetic topological insulators MnBi4Te7 and MnBi6Te10.Phys. Rev. Lett., 2021, 126(17): 176403
https://doi.org/10.1103/PhysRevLett.126.176403
85 Wu X., Li J., M. Ma X., Zhang Y., Liu Y., S. Zhou C., Shao J., Wang Q., J. Hao Y., Feng Y., F. Schwier E., Kumar S., Sun H., Liu P., Shimada K., Miyamoto K., Okuda T., Wang K., Xie M., Chen C., Liu Q., Liu C., Zhao Y.. Distinct topological surface states on the two terminations of MnBi4Te7.Phys. Rev. X, 2020, 10(3): 031013
https://doi.org/10.1103/PhysRevX.10.031013
86 Tian S., Gao S., Nie S., Qian Y., Gong C., Fu Y., Li H., Fan W., Zhang P., Kondo T., Shin S., Adell J., Fedderwitz H., Ding H., Wang Z., Qian T., Lei H.. Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states.Phys. Rev. B, 2020, 102(3): 035144
https://doi.org/10.1103/PhysRevB.102.035144
87 I. Klimovskikh I., M. Otrokov M., Estyunin D., V. Eremeev S., O. Filnov S., Koroleva A., Shevchenko E., Voroshnin V., G. Rybkin A., P. Rusinov I., Blanco-Rey M., Hoffmann M., S. Aliev Z., B. Babanly M., R. Amiraslanov I., A. Abdullayev N., N. Zverev V., Kimura A., E. Tereshchenko O., A. Kokh K., Petaccia L., Di Santo G., Ernst A., M. Echenique P., T. Mamedov N., M. Shikin A., V. Chulkov E.. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family.npj Quantum Mater., 2020, 5: 54
https://doi.org/10.1038/s41535-020-00255-9
88 H. Jo N., L. Wang L., J. Slager R., Yan J., Wu Y., Lee K., Schrunk B., Vishwanath A., Kaminski A.. Intrinsic axion insulating behavior in antiferromagnetic MnBi6Te10.Phys. Rev. B, 2020, 102(4): 045130
https://doi.org/10.1103/PhysRevB.102.045130
89 Hu C., Ding L., N. Gordon K., Ghosh B., J. Tien H., Li H., G. Linn A., W. Lien S., Y. Huang C., Mackey S., Liu J., V. S. Reddy P., Singh B., Agarwal A., Bansil A., Song M., Li D., Y. Xu S., Lin H., Cao H., R. Chang T., Dessau D., Ni N.. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13.Sci. Adv., 2020, 6(30): eaba4275
https://doi.org/10.1126/sciadv.aba4275
90 Hirahara T., M. Otrokov M., T. Sasaki T., Sumida K., Tomohiro Y., Kusaka S., Okuyama Y., Ichinokura S., Kobayashi M., Takeda Y., Amemiya K., Shirasawa T., Ideta S., Miyamoto K., Tanaka K., Kuroda S., Okuda T., Hono K., V. Eremeev S., V. Chulkov E.. Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone.Nat. Commun., 2020, 11(1): 4821
https://doi.org/10.1038/s41467-020-18645-9
91 Wu J., Liu F., Sasase M., Ienaga K., Obata Y., Yukawa R., Horiba K., Kumigashira H., Okuma S., Inoshita T., Hosono H.. Natural van der Waals heterostructural single crystals with both magnetic and topological properties.Sci. Adv., 2019, 5(11): eaax9989
https://doi.org/10.1126/sciadv.aax9989
92 C. Vidal R., Zeugner A., I. Facio J., Ray R., H. Haghighi M., U. B. Wolter A., T. Corredor Bohorquez L., Caglieris F., Moser S., Figgemeier T., R. F. Peixoto T., B. Vasili H., Valvidares M., Jung S., Cacho C., Alfonsov A., Mehlawat K., Kataev V., Hess C., Richter M., Büchner B., van den Brink J., Ruck M., Reinert F., Bentmann H., Isaeva A.. Topological electronic structure and intrinsic magnetization in MnBi4Te7: A Bi2Te3 derivative with a periodic Mn sublattice.Phys. Rev. X, 2019, 9(4): 041065
https://doi.org/10.1103/PhysRevX.9.041065
93 Deng Y., Yu Y., S. Meng Z., Guo Z., Xu Z., Wang J., C. Xian H., Zhang Y.. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4.Science, 2020, 367(6480): 895
https://doi.org/10.1126/science.aax8156
94 Ge J., Liu Y., Li J., Li H., Luo T., Wu Y., Xu Y., Wang J.. High-Chern-number and high-temperature quantum Hall effect without Landau levels.Natl. Sci. Rev., 2020, 7(8): 1280
https://doi.org/10.1093/nsr/nwaa089
95 Gao A., F. Liu Y., Hu C., X. Qiu J., Tzschaschel C., Ghosh B., C. Ho S., Berube D., Chen R., Sun H., Zhang Z., Y. Zhang X., X. Wang Y., Wang N., Huang Z., Felser C., Agarwal A., Ding T., J. Tien H., Akey A., Gardener J., Singh B., Watanabe K., Taniguchi T., S. Burch K., C. Bell D., B. Zhou B., Gao W., Z. Lu H., Bansil A., Lin H., R. Chang T., Fu L., Ma Q., Ni N., Y. Xu S.. Layer Hall effect in a 2D topological axion antiferromagnet.Nature, 2021, 595(7868): 521
https://doi.org/10.1038/s41586-021-03679-w
96 Li S.Gong M. Cheng S.Jiang H.C. Xie X., Dissipationless layertronics in axion insulator MnBi2Te4, arXiv: 2207.09186 (2022)
97 Xu L., Mao Y., Wang H., Li J., Chen Y., Xia Y., Li Y., Pei D., Zhang J., Zheng H., Huang K., Zhang C., Cui S., Liang A., Xia W., Su H., Jung S., Cacho C., Wang M., Li G., Xu Y., Guo Y., Yang L., Liu Z., Chen Y., Jiang M.. Persistent surface states with diminishing gap in MnBi2Te4/Bi2Te3 superlattice antiferromagnetic topological insulator.Sci. Bull. (Beijing), 2020, 65(24): 2086
https://doi.org/10.1016/j.scib.2020.07.032
98 V. Eremeev S., P. Rusinov I., M. Koroteev Y., Y. Vyazovskaya A., Hoffmann M., M. Echenique P., Ernst A., M. Otrokov M., V. Chulkov E.. Topological magnetic materials of the (MnSb2Te4)·(Sb2Te3)n van der Waals compounds family.J. Phys. Chem. Lett., 2021, 12(17): 4268
https://doi.org/10.1021/acs.jpclett.1c00875
99 V. Eremeev S., M. Otrokov M., V. Chulkov E.. Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4 compounds: An ab-initio study.J. Alloys Compd., 2017, 709: 172
https://doi.org/10.1016/j.jallcom.2017.03.121
100 Murakami T., Nambu Y., Koretsune T., Xiangyu G., Yamamoto T., M. Brown C., Kageyama H.. Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state.Phys. Rev. B, 2019, 100(19): 195103
https://doi.org/10.1103/PhysRevB.100.195103
101 Q. Yan J., Okamoto S., A. McGuire M., F. May A., J. McQueeney R., C. Sales B.. Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4.Phys. Rev. B, 2019, 100(10): 104409
https://doi.org/10.1103/PhysRevB.100.104409
102 Chen L., Wang D., Shi C., Jiang C., Liu H., Cui G., Zhang X., Li X.. Electronic structure and magnetism of MnSb2Te4.J. Mater. Sci., 2020, 55(29): 14292
https://doi.org/10.1007/s10853-020-05005-7
103 Chen Y., W. Chuang Y., H. Lee S., Zhu Y., Honz K., Guan Y., Wang Y., Wang K., Mao Z., Zhu J., Heikes C., Quarterman P., Zajdel P., A. Borchers J., Ratcliff W.. Ferromagnetism in van der Waals compound MnSb1.8Bi0.2Te4.Phys. Rev. Mater., 2020, 4(6): 064411
https://doi.org/10.1103/PhysRevMaterials.4.064411
104 Shi G., Zhang M., Yan D., Feng H., Yang M., Shi Y., Li Y.. Anomalous Hall effect in layered ferrimagnet MnSb2Te4.Chin. Phys. Lett., 2020, 37(4): 047301
https://doi.org/10.1088/0256-307X/37/4/047301
105 Wimmer S., Sanchez-Barriga J., Kuppers P., Ney A., Schierle E., Freyse F., Caha O., Michalicka J., Liebmann M., Primetzhofer D., Hoffman M., Ernst A., M. Otrokov M., Bihlmayer G., Weschke E., Lake B., V. Chulkov E., Morgenstern M., Bauer G., Springholz G., Rader O.. Mn-rich MnSb2Te4: A topological insulator with magnetic gap closing at high Curie temperatures of 45−50 K.Adv. Mater., 2021, 33(42): 2102935
https://doi.org/10.1002/adma.202102935
106 Zang Z., Zhu Y., Xi M., Tian S., Wang T., Gu P., Peng Y., Yang S., Xu X., Li Y., Han B., Liu L., Wang Y., Gao P., Yang J., Lei H., Huang Y., Ye Y.. Layer-number-dependent antiferromagnetic and ferromagnetic behavior in MnSb2Te4.Phys. Rev. Lett., 2022, 128(1): 017201
https://doi.org/10.1103/PhysRevLett.128.017201
107 Huan S., Zhang S., Jiang Z., Su H., Wang H., Zhang X., Yang Y., Liu Z., Wang X., Yu N., Zou Z., Shen D., Liu J., Guo Y.. Multiple magnetic topological phases in bulk van der Waals crystal MnSb4Te7.Phys. Rev. Lett., 2021, 126(24): 246601
https://doi.org/10.1103/PhysRevLett.126.246601
108 Yin Y., Ma X., Yan D., Yi C., Yue B., Dai J., Zhao L., Yu X., Shi Y., T. Wang J., Hong F.. Pressure-driven electronic and structural phase transition in intrinsic magnetic topological insulator MnSb2Te4.Phys. Rev. B, 2021, 104(17): 174114
https://doi.org/10.1103/PhysRevB.104.174114
109 Y. Lin J., J. Chen Z., Q. Xie W., B. Yang X., J. Zhao Y.. Toward ferromagnetic semimetal ground state with multiple Weyl nodes in van der Waals crystal MnSb4Te7.New J. Phys., 2022, 24(4): 043033
https://doi.org/10.1088/1367-2630/ac6231
110 Pei C., Xi M., Wang Q., Shi W., Wu J., Gao L., Zhao Y., Tian S., Cao W., Li C., Zhang M., Zhu S., Chen Y., Lei H., Qi Y.. Pressure-induced superconductivity in magnetic topological insulator candidate MnSb4Te7.Phys. Rev. Mater., 2022, 6(10): L101801
https://doi.org/10.1103/PhysRevMaterials.6.L101801
111 Zhang X., Tunable intrinsic ferromagnetic topological phases in bulk van der Waals crystal MnSb6Te10, arXiv: 2111.04973 (2021)
112 M. Ma X., Zhao Y., Zhang K., Kumar S., Lu R., Li J., Yao Q., Shao J., Hou F., Wu X., Zeng M., J. Hao Y., Hao Z., Wang Y., R. Liu X., Shen H., Sun H., Mei J., Miyamoto K., Okuda T., Arita M., F. Schwier E., Shimada K., Deng K., Liu C., Lin J., Zhao Y., Chen C., Liu Q., Liu C.. Realization of a tunable surface Dirac gap in Sb-doped MnBi2Te4.Phys. Rev. B, 2021, 103(12): L121112
https://doi.org/10.1103/PhysRevB.103.L121112
113 Zhu T., J. Bishop A., Zhou T., Zhu M., J. O’Hara D., A. Baker A., Cheng S., C. Walko R., J. Repicky J., Liu T., A. Gupta J., M. Jozwiak C., Rotenberg E., Hwang J., Zutic I., K. Kawakami R.. Synthesis, magnetic properties, and electronic structure of magnetic topological insulator MnBi2Se4.Nano Lett., 2021, 21(12): 5083
https://doi.org/10.1021/acs.nanolett.1c00141
114 Q. Arguilla M., D. Cultrara N., J. Baum Z., Jiang S., D. Ross R., E. Goldberger J.. EuSn2As2: an exfoliatable magnetic layered Zintl–Klemm phase.Inorg. Chem. Front., 2017, 4(2): 378
https://doi.org/10.1039/C6QI00476H
115 Kabir F., Observation of multiple Dirac states in a magnetic topological material EuMg2Bi2, arXiv: 1912.08645 (2019)
116 Regmi S., M. Hosen M., Ghosh B., Singh B., Dhakal G., Sims C., Wang B., Kabir F., Dimitri K., Liu Y., Agarwal A., Lin H., Kaczorowski D., Bansil A., Neupane M.. Temperature-dependent electronic structure in a higher-order topological insulator candidate EuIn2As2.Phys. Rev. B, 2020, 102(16): 165153
https://doi.org/10.1103/PhysRevB.102.165153
117 Marshall M., Pletikosić I., Yahyavi M., J. Tien H., R. Chang T., Cao H., Xie W.. Magnetic and electronic structures of antiferromagnetic topological material candidate EuMg2Bi2.J. Appl. Phys., 2021, 129(3): 035106
https://doi.org/10.1063/5.0035703
118 Zhang Y., Deng K., Zhang X., Wang M., Wang Y., Liu C., W. Mei J., Kumar S., F. Schwier E., Shimada K., Chen C., Shen B.. In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn2As2.Phys. Rev. B, 2020, 101(20): 205126
https://doi.org/10.1103/PhysRevB.101.205126
119 Zhao L., Yi C., T. Wang C., Chi Z., Yin Y., Ma X., Dai J., Yang P., Yue B., Cheng J., Hong F., T. Wang J., Han Y., Shi Y., Yu X.. Monoclinic EuSn2As2: A novel high-pressure network structure.Phys. Rev. Lett., 2021, 126(15): 155701
https://doi.org/10.1103/PhysRevLett.126.155701
120 X. M. Riberolles S., V. Trevisan T., Kuthanazhi B., W. Heitmann T., Ye F., C. Johnston D., L. Bud’ko S., H. Ryan D., C. Canfield P., Kreyssig A., Vishwanath A., J. McQueeney R., Wang L., P. Orth P., G. Ueland B.. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2.Nat. Commun., 2021, 12(1): 999
https://doi.org/10.1038/s41467-021-21154-y
121 C. Chen H., F. Lou Z., X. Zhou Y., Chen Q., J. Xu B., J. Chen S., H. Du J., H. Yang J., D. Wang H., H. Fang M.. Negative magnetoresistance in antiferromagnetic topological insulator EuSn2As2.Chin. Phys. Lett., 2020, 37(4): 047201
https://doi.org/10.1088/0256-307X/37/4/047201
122 Li H., Gao W., Chen Z., Chu W., Nie Y., Ma S., Han Y., Wu M., Li T., Niu Q., Ning W., Zhu X., Tian M.. Magnetic properties of the layered magnetic topological insulator EuSn2As2.Phys. Rev. B, 2021, 104(5): 054435
https://doi.org/10.1103/PhysRevB.104.054435
123 Sun H., Chen C., Hou Y., Wang W., Gong Y., Huo M., Li L., Yu J., Cai W., Liu N., Wu R., X. Yao D., Wang M.. Magnetism variation of the compressed antiferromagnetic topological insulator EuSn2As2.Sci. China Phys. Mech. Astron., 2021, 64(11): 118211
https://doi.org/10.1007/s11433-021-1760-x
124 M. Goforth A., Klavins P., C. Fettinger J., M. Kauzlarich S.. Magnetic properties and negative colossal magnetoresistance of the rare earth Zintl phase EuIn2As2.Inorg. Chem., 2008, 47(23): 11048
https://doi.org/10.1021/ic801290u
125 Tolinski T.Kaczorowski D., Magnetic properties of the putative higher-order topological insulator EuIn2As2, SciPost Physics Proceedings, doi: 10.21468/SciPostPhysProc (2022)
126 Xu Y., Song Z., Wang Z., Weng H., Dai X.. Higher-order topology of the axion insulator EuIn2As2.Phys. Rev. Lett., 2019, 122(25): 256402
https://doi.org/10.1103/PhysRevLett.122.256402
127 Gong M., Sar D., Friedman J., Kaczorowski D., Abdel Razek S., C. Lee W., Aynajian P.. Surface state evolution induced by magnetic order in axion insulator candidate EuIn2As2.Phys. Rev. B, 2022, 106(12): 125156
https://doi.org/10.1103/PhysRevB.106.125156
128 Rosa P., Xu Y., Rahn M., Souza J., Kushwaha S., Veiga L., Bombardi A., Thomas S., Janoschek M., Bauer E., Chan M., Wang Z., Thompson J., Harrison N., Pagliuso P., Bernevig A., Ronning F.. Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator.npj Quantum Mater., 2020, 5: 52
https://doi.org/10.1038/s41535-020-00256-8
129 Varnava N., Berry T., M. McQueen T., Vanderbilt D.. Engineering magnetic topological insulators in Eu5M2X6 Zintl compounds.Phys. Rev. B, 2022, 105(23): 235128
https://doi.org/10.1103/PhysRevB.105.235128
130 Wang H., Mao N., Hu X., Dai Y., Huang B., Niu C.. A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions.Mater. Horiz., 2021, 8(3): 956
https://doi.org/10.1039/D0MH01214A
131 Liu J., Meng S., T. Sun J.. Spin-orientation-dependent topological states in two-dimensional antiferromagnetic NiTl2S4 monolayers.Nano Lett., 2019, 19(5): 3321
https://doi.org/10.1021/acs.nanolett.9b00948
132 Tang P., Zhou Q., Xu G., C. Zhang S.. Dirac fermions in an antiferromagnetic semimetal.Nat. Phys., 2016, 12(12): 1100
https://doi.org/10.1038/nphys3839
133 Wang J.. Antiferromagnetic Dirac semimetals in two dimensions.Phys. Rev. B, 2017, 95(11): 115138
https://doi.org/10.1103/PhysRevB.95.115138
134 M. Young S., J. Wieder B.. Filling-enforced magnetic Dirac semimetals in two dimensions.Phys. Rev. Lett., 2017, 118(18): 186401
https://doi.org/10.1103/PhysRevLett.118.186401
135 Li S., Liu Y., M. Yu Z., Jiao Y., Guan S., L. Sheng X., Yao Y., A. Yang S.. Two-dimensional antiferromagnetic Dirac fermions in monolayer TaCoTe2.Phys. Rev. B, 2019, 100(20): 205102
https://doi.org/10.1103/PhysRevB.100.205102
136 Morali N., Batabyal R., K. Nag P., Liu E., Xu Q., Sun Y., Yan B., Felser C., Avraham N., Beidenkopf H.. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2.Science, 2019, 365(6459): 1286
https://doi.org/10.1126/science.aav2334
137 F. Liu D., J. Liang A., K. Liu E., N. Xu Q., W. Li Y., Chen C., Pei D., J. Shi W., K. Mo S., Dudin P., Kim T., Cacho C., Li G., Sun Y., X. Yang L., K. Liu Z., S. P. Parkin S., Felser C., L. Chen Y.. Magnetic Weyl semimetal phase in a Kagomé crystal.Science, 2019, 365(6459): 1282
https://doi.org/10.1126/science.aav2873
138 Kuroda K., Tomita T., T. Suzuki M., Bareille C., A. Nugroho A., Goswami P., Ochi M., Ikhlas M., Nakayama M., Akebi S., Noguchi R., Ishii R., Inami N., Ono K., Kumigashira H., Varykhalov A., Muro T., Koretsune T., Arita R., Shin S., Kondo T., Nakatsuji S.. Evidence for magnetic Weyl fermions in a correlated metal.Nat. Mater., 2017, 16(11): 1090
https://doi.org/10.1038/nmat4987
139 K. Nayak A., E. Fischer J., Sun Y., Yan B., Karel J., C. Komarek A., Shekhar C., Kumar N., Schnelle W., Kübler J., Felser C., S. P. Parkin S.. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.Sci. Adv., 2016, 2(4): e1501870
https://doi.org/10.1126/sciadv.1501870
140 Nakatsuji S., Kiyohara N., Higo T.. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.Nature, 2015, 527(7577): 212
https://doi.org/10.1038/nature15723
141 Q. Lv B., Xu N., M. Weng H., Z. Ma J., Richard P., C. Huang X., X. Zhao L., F. Chen G., E. Matt C., Bisti F., N. Strocov V., Mesot J., Fang Z., Dai X., Qian T., Shi M., Ding H.. Observation of Weyl nodes in TaAs.Nat. Phys., 2015, 11(9): 724
https://doi.org/10.1038/nphys3426
142 Z. Ma J., B. He J., F. Xu Y., Q. Lv B., Chen D., L. Zhu W., Zhang S., Y. Kong L., Gao X., Y. Rong L., B. Huang Y., Richard P., Y. Xi C., S. Choi E., Shao Y., L. Wang Y., J. Gao H., Dai X., Fang C., M. Weng H., F. Chen G., Qian T., Ding H.. Three-component fermions with surface Fermi arcs in tungsten carbide.Nat. Phys., 2018, 14(4): 349
https://doi.org/10.1038/s41567-017-0021-8
143 Y. Xu S., Alidoust N., Belopolski I., Yuan Z., Bian G., R. Chang T., Zheng H., N. Strocov V., S. Sanchez D., Chang G., Zhang C., Mou D., Wu Y., Huang L., C. Lee C., M. Huang S., K. Wang B., Bansil A., T. Jeng H., Neupert T., Kaminski A., Lin H., Jia S., Zahid Hasan M.. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide.Nat. Phys., 2015, 11(9): 748
https://doi.org/10.1038/nphys3437
144 X. Yang L., K. Liu Z., Sun Y., Peng H., F. Yang H., Zhang T., Zhou B., Zhang Y., F. Guo Y., Rahn M., Prabhakaran D., Hussain Z., K. Mo S., Felser C., Yan B., L. Chen Y.. Weyl semimetal phase in the non-centrosymmetric compound TaAs.Nat. Phys., 2015, 11(9): 728
https://doi.org/10.1038/nphys3425
145 K. Liu Z., Zhou B., Zhang Y., J. Wang Z., M. Weng H., Prabhakaran D., K. Mo S., X. Shen Z., Fang Z., Dai X., Hussain Z., L. Chen Y., of a three-dimensional topological Dirac semimetal Discovery. Na3Bi.Science, 2014, 343(6173): 864
https://doi.org/10.1126/science.1245085
146 K. Liu Z., Jiang J., Zhou B., J. Wang Z., Zhang Y., M. Weng H., Prabhakaran D., K. Mo S., Peng H., Dudin P., Kim T., Hoesch M., Fang Z., Dai X., X. Shen Z., L. Feng D., Hussain Z., L. Chen Y.. A stable three-dimensional topological Dirac semimetal Cd3As2.Nat. Mater., 2014, 13(7): 677
https://doi.org/10.1038/nmat3990
147 Neupane M., Y. Xu S., Sankar R., Alidoust N., Bian G., Liu C., Belopolski I., R. Chang T., T. Jeng H., Lin H., Bansil A., Chou F., Z. Hasan M.. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.Nat. Commun., 2014, 5(1): 3786
https://doi.org/10.1038/ncomms4786
148 Xu G., Weng H., Wang Z., Dai X., Fang Z.. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4.Phys. Rev. Lett., 2011, 107(18): 186806
https://doi.org/10.1103/PhysRevLett.107.186806
149 H. Do S., Kaneko K., Kajimoto R., Kamazawa K., B. Stone M., Y. Y. Lin J., Itoh S., Masuda T., D. Samolyuk G., Dagotto E., R. Meier W., C. Sales B., Miao H., D. Christianson A.. Damped Dirac magnon in the metallic Kagomé antiferromagnet FeSn.Phys. Rev. B, 2022, 105(18): L180403
https://doi.org/10.1103/PhysRevB.105.L180403
150 Lin Z., Wang C., Wang P., Yi S., Li L., Zhang Q., Wang Y., Wang Z., Huang H., Sun Y., Huang Y., Shen D., Feng D., Sun Z., H. Cho J., Zeng C., Zhang Z.. Dirac fermions in antiferromagnetic FeSn Kagomé lattices with combined space inversion and time-reversal symmetry.Phys. Rev. B, 2020, 102(15): 155103
https://doi.org/10.1103/PhysRevB.102.155103
151 Kang M., Ye L., Fang S., S. You J., Levitan A., Han M., I. Facio J., Jozwiak C., Bostwick A., Rotenberg E., K. Chan M., D. McDonald R., Graf D., Kaznatcheev K., Vescovo E., C. Bell D., Kaxiras E., van den Brink J., Richter M., Prasad Ghimire M., G. Checkelsky J., Comin R.. Dirac fermions and flat bands in the ideal Kagomé metal FeSn.Nat. Mater., 2020, 19(2): 163
https://doi.org/10.1038/s41563-019-0531-0
152 Han M., Inoue H., Fang S., John C., Ye L., K. Chan M., Graf D., Suzuki T., P. Ghimire M., J. Cho W., Kaxiras E., G. Checkelsky J.. Evidence of two-dimensional flat band at the surface of antiferromagnetic Kagomé metal FeSn.Nat. Commun., 2021, 12(1): 5345
https://doi.org/10.1038/s41467-021-25705-1
153 H. Lee S., Kim Y., Cho B., Park J., S. Kim M., Park K., Jeon H., Jung M., Park K., D. Lee J., Seo J.. Spin-polarized and possible pseudospin-polarized scanning tunneling microscopy in Kagomé metal FeSn.Commun. Phys., 2022, 5(1): 235
https://doi.org/10.1038/s42005-022-01012-z
154 C. Sales B., Yan J., R. Meier W., D. Christianson A., Okamoto S., A. McGuire M.. Electronic, magnetic, and thermodynamic properties of the Kagomé layer compound FeSn.Phys. Rev. Mater., 2019, 3(11): 114203
https://doi.org/10.1103/PhysRevMaterials.3.114203
155 Liu C., J. Yi C., Y. Wang X., L. Shen J., Xie T., Yang L., Fennel T., Stuhr U., L. Li S., M. Weng H., G. Shi Y., K. Liu E., Q. Luo H.. Anisotropic magnetoelastic response in the magnetic Weyl semimetal Co3Sn2S2.Sci. China Phys. Mech. Astron., 2021, 64(5): 257511
https://doi.org/10.1007/s11433-020-1655-2
156 F. Liu D., K. Liu E., N. Xu Q., L. Shen J., W. Li Y., Pei D., J. Liang A., Dudin P., K. Kim T., Cacho C., F. Xu Y., Sun Y., X. Yang L., K. Liu Z., Felser C., S. P. Parkin S., L. Chen Y.. Direct observation of the spin–orbit coupling effect in magnetic Weyl semimetal Co3Sn2S2.npj Quantum Mater., 2022, 7: 11
https://doi.org/10.1038/s41535-021-00392-9
157 Kanagaraj M., Ning J., He L.. Topological Co3Sn2S2 magnetic Weyl semimetal: From fundamental understanding to diverse fields of study.Reviews in Physics, 2022, 8: 100072
https://doi.org/10.1016/j.revip.2022.100072
158 Belopolski I., A. Cochran T., Liu X., J. Cheng Z., P. Yang X., Guguchia Z., S. Tsirkin S., X. Yin J., Vir P., S. Thakur G., S. Zhang S., Zhang J., Kaznatcheev K., Cheng G., Chang G., Multer D., Shumiya N., Litskevich M., Vescovo E., K. Kim T., Cacho C., Yao N., Felser C., Neupert T., Z. Hasan M.. Signatures of Weyl fermion annihilation in a correlated Kagomé magnet.Phys. Rev. Lett., 2021, 127(25): 256403
https://doi.org/10.1103/PhysRevLett.127.256403
159 Li G., Xu Q., Shi W., Fu C., Jiao L., E. Kamminga M., Yu M., Tüysüz H., Kumar N., Süß V., Saha R., K. Srivastava A., Wirth S., Auffermann G., Gooth J., Parkin S., Sun Y., Liu E., Felser C.. Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation.Sci. Adv., 2019, 5(8): eaaw9867
https://doi.org/10.1126/sciadv.aaw9867
160 Xu Q., Liu E., Shi W., Muechler L., Gayles J., Felser C., Sun Y.. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2.Phys. Rev. B, 2018, 97(23): 235416
https://doi.org/10.1103/PhysRevB.97.235416
161 Wang Q., Xu Y., Lou R., Liu Z., Li M., Huang Y., Shen D., Weng H., Wang S., Lei H.. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions.Nat. Commun., 2018, 9(1): 3681
https://doi.org/10.1038/s41467-018-06088-2
162 Tanaka M., Fujishiro Y., Mogi M., Kaneko Y., Yokosawa T., Kanazawa N., Minami S., Koretsune T., Arita R., Tarucha S., Yamamoto M., Tokura Y.. Topological Kagomé magnet Co3Sn2S2 thin flakes with high electron mobility and large anomalous Hall effect.Nano Lett., 2020, 20(10): 7476
https://doi.org/10.1021/acs.nanolett.0c02962
163 Reichlova H., Janda T., Godinho J., Markou A., Kriegner D., Schlitz R., Zelezny J., Soban Z., Bejarano M., Schultheiss H., Nemec P., Jungwirth T., Felser C., Wunderlich J., T. B. Goennenwein S.. Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn.Nat. Commun., 2019, 10(1): 5459
https://doi.org/10.1038/s41467-019-13391-z
164 Chen T., Tomita T., Minami S., Fu M., Koretsune T., Kitatani M., Muhammad I., Nishio-Hamane D., Ishii R., Ishii F., Arita R., Nakatsuji S.,Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn. Ge.Nat. Commun., 2021, 12(1): 572
https://doi.org/10.1038/s41467-020-20838-1
165 R. Soh J., de Juan F., Qureshi N., Jacobsen H., Y. Wang H., F. Guo Y., T. Boothroyd A.. Ground-state magnetic structure of Mn3Ge.Phys. Rev. B, 2020, 101(14): 140411
https://doi.org/10.1103/PhysRevB.101.140411
166 Liu J., Balents L.. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge.Phys. Rev. Lett., 2017, 119(8): 087202
https://doi.org/10.1103/PhysRevLett.119.087202
167 Yang H., Sun Y., Zhang Y., J. Shi W., S. P. Parkin S., Yan B.. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn.New J. Phys., 2017, 19(1): 015008
https://doi.org/10.1088/1367-2630/aa5487
168 Kiyohara N., Tomita T., Nakatsuji S.. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge.Phys. Rev. Appl., 2016, 5(6): 064009
https://doi.org/10.1103/PhysRevApplied.5.064009
169 Higo T., Qu D., Li Y., L. Chien C., Otani Y., Nakatsuji S.. Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn.Appl. Phys. Lett., 2018, 113(20): 202402
https://doi.org/10.1063/1.5064697
170 Matsuda T., Kanda N., Higo T., P. Armitage N., Nakatsuji S., Matsunaga R.. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films.Nat. Commun., 2020, 11(1): 909
https://doi.org/10.1038/s41467-020-14690-6
171 M. Taylor J., Markou A., Lesne E., K. Sivakumar P., Luo C., Radu F., Werner P., Felser C., S. P. Parkin S.. Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn3Sn.Phys. Rev. B, 2020, 101(9): 094404
https://doi.org/10.1103/PhysRevB.101.094404
172 Ikhlas M., Tomita T., Koretsune T., T. Suzuki M., Nishio-Hamane D., Arita R., Otani Y., Nakatsuji S.. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet.Nat. Phys., 2017, 13(11): 1085
https://doi.org/10.1038/nphys4181
173 Wuttke C., Caglieris F., Sykora S., Scaravaggi F., U. B. Wolter A., Manna K., Süss V., Shekhar C., Felser C., Büchner B., Hess C.. Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge.Phys. Rev. B, 2019, 100(8): 085111
https://doi.org/10.1103/PhysRevB.100.085111
174 Li X., Collignon C., Xu L., Zuo H., Cavanna A., Gennser U., Mailly D., Fauque B., Balents L., Zhu Z., Behnia K.. Chiral domain walls of Mn3Sn and their memory.Nat. Commun., 2019, 10(1): 3021
https://doi.org/10.1038/s41467-019-10815-8
175 K. Rout P., V. P. Madduri P., K. Manna S., K. Nayak A.. Field-induced topological Hall effect in the noncoplanar triangular antiferromagnetic geometry of Mn3Sn.Phys. Rev. B, 2019, 99(9): 094430
https://doi.org/10.1103/PhysRevB.99.094430
176 Xu L., Li X., Ding L., Behnia K., Zhu Z.. Planar Hall effect caused by the memory of antiferromagnetic domain walls in Mn3Ge.Appl. Phys. Lett., 2020, 117(22): 222403
https://doi.org/10.1063/5.0030546
177 Kimata M., Chen H., Kondou K., Sugimoto S., K. Muduli P., Ikhlas M., Omori Y., Tomita T., H. MacDonald A., Nakatsuji S., Otani Y.. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet.Nature, 2019, 565(7741): 627
https://doi.org/10.1038/s41586-018-0853-0
178 Li P., Koo J., Ning W., Li J., Miao L., Min L., Zhu Y., Wang Y., Alem N., X. Liu C., Mao Z., Yan B.. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl.Nat. Commun., 2020, 11(1): 3476
https://doi.org/10.1038/s41467-020-17174-9
179 Chang G., Y. Xu S., Zhou X., M. Huang S., Singh B., Wang B., Belopolski I., Yin J., Zhang S., Bansil A., Lin H., Z. Hasan M.. Topological Hopf and chain link semimetal states and their application to Co2MnGa.Phys. Rev. Lett., 2017, 119(15): 156401
https://doi.org/10.1103/PhysRevLett.119.156401
180 Belopolski I., Chang G., A. Cochran T., J. Cheng Z., P. Yang X., Hugelmeyer C., Manna K., X. Yin J., Cheng G., Multer D., Litskevich M., Shumiya N., S. Zhang S., Shekhar C., B. M. Schroter N., Chikina A., Polley C., Thiagarajan B., Leandersson M., Adell J., M. Huang S., Yao N., N. Strocov V., Felser C., Z. Hasan M.. Observation of a linked-loop quantum state in a topological magnet.Nature, 2022, 604(7907): 647
https://doi.org/10.1038/s41586-022-04512-8
181 Wang Z., G. Vergniory M., Kushwaha S., Hirschberger M., V. Chulkov E., Ernst A., P. Ong N., J. Cava R., A. Bernevig B.. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys.Phys. Rev. Lett., 2016, 117(23): 236401
https://doi.org/10.1103/PhysRevLett.117.236401
182 Chang G., Y. Xu S., Zheng H., Singh B., H. Hsu C., Bian G., Alidoust N., Belopolski I., S. Sanchez D., Zhang S., Lin H., Z. Hasan M., Room-temperature magnetic topological Weyl fermion, nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si. Ge, or Sn).Sci. Rep., 2016, 6(1): 38839
https://doi.org/10.1038/srep38839
183 Y. Umetsu R., Kobayashi K., Fujita A., Kainuma R., Ishida K.. Magnetic properties and stability of L21 and B2 phases in the Co2MnAl Heusler alloy.J. Appl. Phys., 2008, 103(7): 07D718
https://doi.org/10.1063/1.2836677
184 W. Carbonari A., N. Saxena R., Jr Pendl W., Mestnik Filho J., N. Attili R., Olzon-Dionysio M., D. de Souza S., Magnetic hyperfine field in the Heusler alloys Co2YZ (Y = V, Nb Z = Al. Ga).J. Magn. Magn. Mater., 1996, 163(3): 313
https://doi.org/10.1016/S0304-8853(96)00338-1
185 Yan Z., Bi R., Shen H., Lu L., C. Zhang S., Wang Z.. Nodal-link semimetals.Phys. Rev. B, 2017, 96(4): 041103
https://doi.org/10.1103/PhysRevB.96.041103
186 Ezawa M., semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link Topological. Solomon’s knot, trefoil knot, and other linked nodal varieties.Phys. Rev. B, 2017, 96(4): 041202
https://doi.org/10.1103/PhysRevB.96.041202
187 Y. Chang P., H. Yee C.. Weyl-link semimetals.Phys. Rev. B, 2017, 96(8): 081114
https://doi.org/10.1103/PhysRevB.96.081114
188 Sumida K., Sakuraba Y., Masuda K., Kono T., Kakoki M., Goto K., Zhou W., Miyamoto K., Miura Y., Okuda T., Kimura A.. Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films.Commun. Mater., 2020, 1(1): 89
https://doi.org/10.1038/s43246-020-00088-w
189 Wu Q., A. Soluyanov A., Bzdusek T.. Non-Abelian band topology in noninteracting metals.Science, 2019, 365(6459): 1273
https://doi.org/10.1126/science.aau8740
190 Belopolski I., Manna K., S. Sanchez D., Chang G., Ernst B., Yin J., S. Zhang S., Cochran T., Shumiya N., Zheng H., Singh B., Bian G., Multer D., Litskevich M., Zhou X., M. Huang S., Wang B., R. Chang T., Y. Xu S., Bansil A., Felser C., Lin H., Z. Hasan M.. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet.Science, 2019, 365(6459): 1278
https://doi.org/10.1126/science.aav2327
191 Zhong C., Chen Y., M. Yu Z., Xie Y., Wang H., A. Yang S., Zhang S.. Three-dimensional pentagon carbon with a genesis of emergent fermions.Nat. Commun., 2017, 8(1): 15641
https://doi.org/10.1038/ncomms15641
192 Bouhon A., S. Wu Q., J. Slager R., Weng H., V. Yazyev O., Bzdušek T.. Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe.Nat. Phys., 2020, 16(11): 1137
https://doi.org/10.1038/s41567-020-0967-9
193 Yuan J., Shi X., Su H., Zhang X., Wang X., Yu N., Zou Z., Zhao W., Liu J., Guo Y.. Magnetization tunable Weyl states in EuB6.Phys. Rev. B, 2022, 106(5): 054411
https://doi.org/10.1103/PhysRevB.106.054411
194 Y. Gao S., Xu S., Li H., J. Yi C., M. Nie S., C. Rao Z., Wang H., X. Hu Q., Z. Chen X., H. Fan W., R. Huang J., B. Huang Y., Pryds N., Shi M., J. Wang Z., G. Shi Y., L. Xia T., Qian T., Ding H.. Time-reversal symmetry breaking driven topological phase transition in EuB6.Phys. Rev. X, 2021, 11(2): 021016
https://doi.org/10.1103/PhysRevX.11.021016
195 Nie S., Sun Y., B. Prinz F., Wang Z., Weng H., Fang Z., Dai X.. Magnetic semimetals and quantized anomalous Hall effect in EuB6.Phys. Rev. Lett., 2020, 124(7): 076403
https://doi.org/10.1103/PhysRevLett.124.076403
196 Zhang X., von Molnar S., Fisk Z., Xiong P.. Spin-dependent electronic states of the ferromagnetic semimetal EuB6.Phys. Rev. Lett., 2008, 100(16): 167001
https://doi.org/10.1103/PhysRevLett.100.167001
197 Kim J., Ku W., C. Lee C., S. Ellis D., K. Cho B., H. Said A., Shvyd’ko Y., J. Kim Y.. Spin-split conduction band in EuB6 and tuning of half-metallicity with external stimuli.Phys. Rev. B, 2013, 87(15): 155104
https://doi.org/10.1103/PhysRevB.87.155104
198 Süllow S., Prasad I., C. Aronson M., L. Sarrao J., Fisk Z., Hristova D., H. Lacerda A., F. Hundley M., Vigliante A., Gibbs D.. Structure and magnetic order of EuB6.Phys. Rev. B, 1998, 57(10): 5860
https://doi.org/10.1103/PhysRevB.57.5860
199 L. Brooks M., Lancaster T., J. Blundell S., Hayes W., L. Pratt F., Fisk Z.. Magnetic phase separation in EuB6 detected by muon spin rotation.Phys. Rev. B, 2004, 70(2): 020401
https://doi.org/10.1103/PhysRevB.70.020401
200 Degiorgi L., Felder E., R. Ott H., L. Sarrao J., Fisk Z.. Low-temperature anomalies and ferromagnetism of EuB6.Phys. Rev. Lett., 1997, 79(25): 5134
https://doi.org/10.1103/PhysRevLett.79.5134
201 N. Guy C., von Molnar S., Etourneau J., Fisk Z.. Charge transport and pressure dependence of Tc of single crystal, ferromagnetic EuB6.Solid State Commun., 1980, 33(10): 1055
https://doi.org/10.1016/0038-1098(80)90316-6
202 Nyhus P., Yoon S., Kauffman M., L. Cooper S., Fisk Z., Sarrao J.. Spectroscopic study of bound magnetic polaron formation and the metal-semiconductor transition in EuB6.Phys. Rev. B, 1997, 56(5): 2717
https://doi.org/10.1103/PhysRevB.56.2717
203 Beaudin G., M. Fournier L., D. Bianchi A., Nicklas M., Kenzelmann M., Laver M., Witczak-Krempa W.. Possible quantum nematic phase in a colossal magnetoresistance material.Phys. Rev. B, 2022, 105(3): 035104
https://doi.org/10.1103/PhysRevB.105.035104
204 L. Liu W., Zhang X., M. Nie S., T. Liu Z., Y. Sun X., Y. Wang H., Y. Ding J., Jiang Q., Sun L., H. Xue F., Huang Z., Su H., C. Yang Y., C. Jiang Z., L. Lu X., Yuan J., Cho S., S. Liu J., H. Liu Z., Ye M., L. Zhang S., M. Weng H., Liu Z., F. Guo Y., J. Wang Z., W. Shen D.. Spontaneous ferromagnetism induced topological transition in EuB6.Phys. Rev. Lett., 2022, 129(16): 166402
https://doi.org/10.1103/PhysRevLett.129.166402
205 Zeng Q., Yi C., Shen J., Wang B., Wei H., Shi Y., Liu E.. Berry curvature induced antisymmetric in-plane magneto-transport in magnetic Weyl EuB6.Appl. Phys. Lett., 2022, 121(16): 162405
https://doi.org/10.1063/5.0114252
206 Chen B., H. Yang J., D. Wang H., Imai M., Ohta H., Michioka C., Yoshimura K., H. Fang M.. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2.J. Phys. Soc. Jpn., 2013, 82(12): 124711
https://doi.org/10.7566/JPSJ.82.124711
207 Zhang Y., Lu H., Zhu X., Tan S., Feng W., Liu Q., Zhang W., Chen Q., Liu Y., Luo X., Xie D., Luo L., Zhang Z., Lai X., of Kondo lattice behavior in a van der Waals itinerant ferromagnet Emergence. Fe3GeTe2.Sci. Adv., 2018, 4(1): eaao6791
https://doi.org/10.1126/sciadv.aao6791
208 Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., Zhang Y.. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2.Nature, 2018, 563(7729): 94
https://doi.org/10.1038/s41586-018-0626-9
209 Lin X., Ni J.. Layer-dependent intrinsic anomalous Hall effect in Fe3GeTe2.Phys. Rev. B, 2019, 100(8): 085403
https://doi.org/10.1103/PhysRevB.100.085403
210 Kim K., Seo J., Lee E., T. Ko K., S. Kim B., G. Jang B., M. Ok J., Lee J., J. Jo Y., Kang W., H. Shim J., Kim C., W. Yeom H., Il Min B., J. Yang B., S. Kim J.. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal.Nat. Mater., 2018, 17(9): 794
https://doi.org/10.1038/s41563-018-0132-3
211 J. Deiseroth H., Aleksandrov K., Reiner C., Kienle L., K. Kremer R.. Fe3GeTe2 and Ni3GeTe2 – two new layered transition‐metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties.Eur. J. Inorg. Chem., 2006, 2006(8): 1561
https://doi.org/10.1002/ejic.200501020
212 Yi J., Zhuang H., Zou Q., Wu Z., Cao G., Tang S., A. Calder S., R. C. Kent P., Mandrus D., Gai Z.. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2.2D Mater., 2016, 4: 011005
https://doi.org/10.1088/2053-1583/4/1/011005
213 Wang Y., Xian C., Wang J., Liu B., Ling L., Zhang L., Cao L., Qu Z., Xiong Y.. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2.Phys. Rev. B, 2017, 96(13): 134428
https://doi.org/10.1103/PhysRevB.96.134428
214 Ke J., Yang M., Xia W., Zhu H., Liu C., Chen R., Dong C., Liu W., Shi M., Guo Y., Wang J.. Magnetic and magneto-transport studies of two-dimensional ferromagnetic compound Fe3GeTe2.J. Phys.: Condens. Matter, 2020, 32(40): 405805
https://doi.org/10.1088/1361-648X/ab9bc9
215 Feng H., Li Y., Shi Y., Y. Xie H., Li Y., Xu Y.. Resistance anomaly and linear magnetoresistance in thin flakes of itinerant ferromagnet Fe3GeTe2.Chin. Phys. Lett., 2022, 39(7): 077501
https://doi.org/10.1088/0256-307X/39/7/077501
216 Xu J., A. Phelan W., L. Chien C.. Large anomalous Nernst effect in a van der Waals ferromagnet Fe3GeTe2.Nano Lett., 2019, 19(11): 8250
https://doi.org/10.1021/acs.nanolett.9b03739
217 Fei Z., Huang B., Malinowski P., Wang W., Song T., Sanchez J., Yao W., Xiao D., Zhu X., F. May A., Wu W., H. Cobden D., H. Chu J., Xu X.. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2.Nat. Mater., 2018, 17(9): 778
https://doi.org/10.1038/s41563-018-0149-7
218 Li Q., Yang M., Gong C., V. Chopdekar R., T. N’Diaye A., Turner J., Chen G., Scholl A., Shafer P., Arenholz E., K. Schmid A., Wang S., Liu K., Gao N., S. Admasu A., W. Cheong S., Hwang C., Li J., Wang F., Zhang X., Qiu Z.. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature.Nano Lett., 2018, 18(9): 5974
https://doi.org/10.1021/acs.nanolett.8b02806
219 Tan C., Lee J., G. Jung S., Park T., Albarakati S., Partridge J., R. Field M., G. McCulloch D., Wang L., Lee C.. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2.Nat. Commun., 2018, 9(1): 1554
https://doi.org/10.1038/s41467-018-04018-w
220 Wang X., Tang J., Xia X., He C., Zhang J., Liu Y., Wan C., Fang C., Guo C., Yang W., Guang Y., Zhang X., Xu H., Wei J., Liao M., Lu X., Feng J., Li X., Peng Y., Wei H., Yang R., Shi D., Zhang X., Han Z., Zhang Z., Zhang G., Yu G., Han X.. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2.Sci. Adv., 2019, 5(8): eaaw8904
https://doi.org/10.1126/sciadv.aaw8904
221 Y. Park S., S. Kim D., Liu Y., Hwang J., Kim Y., Kim W., Y. Kim J., Petrovic C., Hwang C., K. Mo S., J. Kim H., C. Min B., C. Koo H., Chang J., Jang C., W. Choi J., Ryu H.. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping.Nano Lett., 2020, 20(1): 95
https://doi.org/10.1021/acs.nanolett.9b03316
222 Wang H., Liu Y., Wu P., Hou W., Jiang Y., Li X., Pandey C., Chen D., Yang Q., Wang H., Wei D., Lei N., Kang W., Wen L., Nie T., Zhao W., L. Wang K.. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der Waals Fe3GeTe2 tailored by a topological insulator.ACS Nano, 2020, 14(8): 10045
https://doi.org/10.1021/acsnano.0c03152
223 K. Park I., Gong C., Kim K., Lee G.. Controlling interlayer magnetic coupling in the two-dimensional magnet Fe3GeTe2.Phys. Rev. B, 2022, 105(1): 014406
https://doi.org/10.1103/PhysRevB.105.014406
224 P. Wang H., S. Wu D., G. Shi Y., L. Wang N.. Anisotropic transport and optical spectroscopy study on antiferromagnetic triangular lattice EuCd2As2: An interplay between magnetism and charge transport properties.Phys. Rev. B, 2016, 94(4): 045112
https://doi.org/10.1103/PhysRevB.94.045112
225 C. Rahn M., R. Soh J., Francoual S., S. I. Veiga L., Strempfer J., Mardegan J., Y. Yan D., F. Guo Y., G. Shi Y., T. Boothroyd A.. Coupling of magnetic order and charge transport in the candidate Dirac semimetal EuCd2As2.Phys. Rev. B, 2018, 97(21): 214422
https://doi.org/10.1103/PhysRevB.97.214422
226 M. Taddei K., Yin L., D. Sanjeewa L., Li Y., Xing J., dela Cruz C., Phelan D., S. Sefat A., S. Parker D.. Single pair of Weyl nodes in the spin-canted structure of EuCd2As2.Phys. Rev. B, 2022, 105(14): L140401
https://doi.org/10.1103/PhysRevB.105.L140401
227 Ma J., Wang H., Nie S., Yi C., Xu Y., Li H., Jandke J., Wulfhekel W., Huang Y., West D., Richard P., Chikina A., N. Strocov V., Mesot J., Weng H., Zhang S., Shi Y., Qian T., Shi M., Ding H.. Emergence of nontrivial low-energy Dirac fermions in antiferromagnetic EuCd2As2.Adv. Mater., 2020, 32(14): 1907565
https://doi.org/10.1002/adma.201907565
228 Cao X., X. Yu J., Leng P., Yi C., Chen X., Yang Y., Liu S., Kong L., Li Z., Dong X., Shi Y., Bibes M., Peng R., Zang J., Xiu F.. Giant nonlinear anomalous Hall effect induced by spin-dependent band structure evolution.Phys. Rev. Res., 2022, 4(2): 023100
https://doi.org/10.1103/PhysRevResearch.4.023100
229 Schellenberg I., Pfannenschmidt U., Eul M., Schwickert C., Pöttgen R., A121Sb and 151Eu Mössbauer spectroscopic investigation of EuCd2X2 (X = P. Sb) and YbCd2Sb2.Z. Anorg. Allg. Chem., 2011, 637(12): 1863
https://doi.org/10.1002/zaac.201100179
230 L. Wang L., H. Jo N., Kuthanazhi B., Wu Y., J. McQueeney R., Kaminski A., C. Canfield P.. Single pair of Weyl fermions in the half-metallic semimetal EuCd2As2.Phys. Rev. B, 2019, 99(24): 245147
https://doi.org/10.1103/PhysRevB.99.245147
231 R. Soh J., Donnerer C., M. Hughes K., Schierle E., Weschke E., Prabhakaran D., T. Boothroyd A.. Magnetic and electronic structure of the layered rare-earth pnictide EuCd2Sb2.Phys. Rev. B, 2018, 98(6): 064419
https://doi.org/10.1103/PhysRevB.98.064419
232 Krishna J., Nautiyal T., Maitra T.. First-principles study of electronic structure, transport, and optical properties of EuCd2As2.Phys. Rev. B, 2018, 98(12): 125110
https://doi.org/10.1103/PhysRevB.98.125110
233 Sun Y., Li Y., Li S., Yi C., Deng H., Du X., Liu L., Zhu C., Li Y., Wang Z., Mao H., Shi Y., Wu R.. Experimental evidence for field-induced metamagnetic transition of EuCd2As2.J. Rare Earths, 2022, 40(10): 1606
https://doi.org/10.1016/j.jre.2021.08.002
234 Hua G., Nie S., Song Z., Yu R., Xu G., Yao K.. Dirac semimetal in type-IV magnetic space groups.Phys. Rev. B, 2018, 98(20): 201116
https://doi.org/10.1103/PhysRevB.98.201116
235 Schindler F., M. Cook A., G. Vergniory M., Wang Z., S. P. Parkin S., A. Bernevig B., Neupert T.. Higher-order topological insulators.Sci. Adv., 2018, 4(6): eaat0346
https://doi.org/10.1126/sciadv.aat0346
236 R. Soh J., de Juan F., G. Vergniory M., B. M. Schröter N., C. Rahn M., Y. Yan D., Jiang J., Bristow M., A. Reiss P., N. Blandy J., F. Guo Y., G. Shi Y., K. Kim T., McCollam A., H. Simon S., Chen Y., I. Coldea A., T. Boothroyd A.. Ideal Weyl semimetal induced by magnetic exchange.Phys. Rev. B, 2019, 100(20): 201102
https://doi.org/10.1103/PhysRevB.100.201102
237 A. Fenner L., A. Dee A., S. Wills A.. Non-collinearity and spin frustration in the itinerant Kagomé ferromagnet Fe3Sn2.J. Phys.: Condens. Matter, 2009, 21(45): 452202
https://doi.org/10.1088/0953-8984/21/45/452202
238 Ye L., Kang M., Liu J., von Cube F., R. Wicker C., Suzuki T., Jozwiak C., Bostwick A., Rotenberg E., C. Bell D., Fu L., Comin R., G. Checkelsky J.. Massive Dirac fermions in a ferromagnetic Kagomé metal.Nature, 2018, 555(7698): 638
https://doi.org/10.1038/nature25987
239 Malaman B., Roques B., Courtois A., Protas J.. Structure cristalline du stannure de fer Fe3Sn2.Acta Crystallogr. B, 1976, 32(5): 1348
https://doi.org/10.1107/S0567740876005323
240 L. Caer G., Malaman B., Roques B.. Mossbauer effect study of Fe3Sn2.J. Phys. F Met. Phys., 1978, 8(2): 323
https://doi.org/10.1088/0305-4608/8/2/018
241 Malaman B., Fruchart D., L. Caer G.. Magnetic properties of Fe3Sn2 (II): Neutron diffraction study (and Mossbauer effect).J. Phys. F Met. Phys., 1978, 8(11): 2389
https://doi.org/10.1088/0305-4608/8/11/022
242 Le Caer G., Malaman B., Haggstrom L., Ericsson T.. Magnetic properties of Fe3Sn2 (III): A 119Sn Mossbauer study.J. Phys. F Met. Phys., 1979, 9(9): 1905
https://doi.org/10.1088/0305-4608/9/9/020
243 Lin Z., H. Choi J., Zhang Q., Qin W., Yi S., Wang P., Li L., Wang Y., Zhang H., Sun Z., Wei L., Zhang S., Guo T., Lu Q., H. Cho J., Zeng C., Zhang Z.. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 Kagomé lattices.Phys. Rev. Lett., 2018, 121(9): 096401
https://doi.org/10.1103/PhysRevLett.121.096401
244 X. Yin J., S. Zhang S., Li H., Jiang K., Chang G., Zhang B., Lian B., Xiang C., Belopolski I., Zheng H., A. Cochran T., Y. Xu S., Bian G., Liu K., R. Chang T., Lin H., Y. Lu Z., Wang Z., Jia S., Wang W., Z. Hasan M.. Giant and anisotropic many-body spin−orbit tunability in a strongly correlated Kagomé magnet.Nature, 2018, 562(7725): 91
https://doi.org/10.1038/s41586-018-0502-7
245 Wang Q., Sun S., Zhang X., Pang F., Lei H.. Anomalous Hall effect in a ferromagnetic Fe3Sn2 single crystal with a geometrically frustrated Fe bilayer Kagomé lattice.Phys. Rev. B, 2016, 94(7): 075135
https://doi.org/10.1103/PhysRevB.94.075135
246 P. Hou Z., Ding B., Li H., Z. Xu G., H. Wang W., H. Wu G.. Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device.Acta Phys. Sin., 2018, 67(13): 137509
https://doi.org/10.7498/aps.67.20180419
247 Li H., Ding B., Chen J., Li Z., Hou Z., Liu E., Zhang H., Xi X., Wu G., Wang W.. Large topological Hall effect in a geometrically frustrated Kagomé magnet Fe3Sn2.Appl. Phys. Lett., 2019, 114(19): 192408
https://doi.org/10.1063/1.5088173
248 D. O’Neill C., S. Wills A., D. Huxley A.. Possible topological contribution to the anomalous Hall effect of the noncollinear ferromagnet Fe3Sn2.Phys. Rev. B, 2019, 100(17): 174420
https://doi.org/10.1103/PhysRevB.100.174420
249 Wang Q., Yin Q., Lei H.. Giant topological Hall effect of ferromagnetic Kagomé metal Fe3Sn2.Chin. Phys. B, 2020, 29(1): 017101
https://doi.org/10.1088/1674-1056/ab5fbc
250 Hou Z., Ren W., Ding B., Xu G., Wang Y., Yang B., Zhang Q., Zhang Y., Liu E., Xu F., Wang W., Wu G., Zhang X., Shen B., Zhang Z.. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated Kagomé magnet with uniaxial magnetic anisotropy.Adv. Mater., 2017, 29(29): 1701144
https://doi.org/10.1002/adma.201701144
251 Hou Z., Zhang Q., Xu G., Gong C., Ding B., Wang Y., Li H., Liu E., Xu F., Zhang H., Yao Y., Wu G., X. Zhang X., Wang W.. Creation of single chain of nanoscale skyrmion bubbles with record-high temperature stability in a geometrically confined nanostripe.Nano Lett., 2018, 18(2): 1274
https://doi.org/10.1021/acs.nanolett.7b04900
252 Gao L., Shen S., Wang Q., Shi W., Zhao Y., Li C., Cao W., Pei C., Y. Ge J., Li G., Li J., Chen Y., Yan S., Qi Y., Anomalous Hall effect in ferrimagnetic metal RMn6Sn6 (R = Tb. Ho) with clean Mn Kagomé lattice.Appl. Phys. Lett., 2021, 119(9): 092405
https://doi.org/10.1063/5.0061260
253 X. Yin J., Ma W., A. Cochran T., Xu X., S. Zhang S., J. Tien H., Shumiya N., Cheng G., Jiang K., Lian B., Song Z., Chang G., Belopolski I., Multer D., Litskevich M., J. Cheng Z., P. Yang X., Swidler B., Zhou H., Lin H., Neupert T., Wang Z., Yao N., R. Chang T., Jia S., Zahid Hasan M.. Quantum-limit Chern topological magnetism in TbMn6Sn6.Nature, 2020, 583(7817): 533
https://doi.org/10.1038/s41586-020-2482-7
254 Chen D., Le C., Fu C., Lin H., Schnelle W., Sun Y., Felser C.. Large anomalous Hall effect in the Kagomé ferromagnet LiMn6Sn6.Phys. Rev. B, 2021, 103(14): 144410
https://doi.org/10.1103/PhysRevB.103.144410
255 C. El Idrissi B., Venturini G., Malaman B.. Crystal structures of RFe6Sn6 (R = Sc, Y, Gd−Tm, Lu) rare-earth iron stannides.Mater. Res. Bull., 1991, 26(12): 1331
https://doi.org/10.1016/0025-5408(91)90149-G
256 Venturini G., C. E. Idrissi B., Malaman B., Magnetic properties of RMn6Sn6 (R = Sc. Lu) compounds with HfFe6Ge6 type structure.J. Magn. Magn. Mater., 1991, 94(1−2): 35
https://doi.org/10.1016/0304-8853(91)90108-M
257 J. Ghimire N., L. Dally R., Poudel L., C. Jones D., Michel D., T. Magar N., Bleuel M., A. McGuire M., S. Jiang J., F. Mitchell J., W. Lynn J., I. Mazin I.. Competing magnetic phases and fluctuation-driven scalar spin chirality in the Kagomé metal YMn6Sn6.Sci. Adv., 2020, 6(51): eabe2680
https://doi.org/10.1126/sciadv.abe2680
258 Ma W., Xu X., X. Yin J., Yang H., Zhou H., J. Cheng Z., Huang Y., Qu Z., Wang F., Z. Hasan M., Jia S., Rareearth engineering in RMn6Sn6 (R = Gd−Tm. Lu) topological Kagomé magnets.Phys. Rev. Lett., 2021, 126(24): 246602
https://doi.org/10.1103/PhysRevLett.126.246602
259 Li M., Wang Q., Wang G., Yuan Z., Song W., Lou R., Liu Z., Huang Y., Liu Z., Lei H., Yin Z., Wang S.. Dirac cone, flat band and saddle point in Kagomé magnet YMn6Sn6.Nat. Commun., 2021, 12(1): 3129
https://doi.org/10.1038/s41467-021-23536-8
260 Gu X., Chen C., S. Wei W., L. Gao L., Y. Liu J., Du X., Pei D., S. Zhou J., Z. Xu R., X. Yin Z., X. Zhao W., D. Li Y., Jozwiak C., Bostwick A., Rotenberg E., Backes D., S. I. Veiga L., Dhesi S., Hesjedal T., van der Laan G., F. Du H., J. Jiang W., P. Qi Y., Li G., J. Shi W., K. Liu Z., L. Chen Y., X. Yang L., Robust Kagomé electronic structure in the topological quantum magnets XMn6Sn6 (X=Dy. Gd, Y).Phys. Rev. B, 2022, 105(15): 155108
https://doi.org/10.1103/PhysRevB.105.155108
261 Roychowdhury S., M. Ochs A., N. Guin S., Samanta K., Noky J., Shekhar C., G. Vergniory M., E. Goldberger J., Felser C.. Large room temperature anomalous transverse thermoelectric effect in Kagomé antiferromagnet YMn6Sn6.Adv. Mater., 2022, 34(40): e2201350
https://doi.org/10.1002/adma.202201350
262 Dhakal G., Cheenicode Kabeer F., K. Pathak A., Kabir F., Poudel N., Filippone R., Casey J., Pradhan Sakhya A., Regmi S., Sims C., Dimitri K., Manfrinetti P., Gofryk K., M. Oppeneer P., Neupane M.. Anisotropically large anomalous and topological Hall effect in a Kagomé magnet.Phys. Rev. B, 2021, 104(16): L161115
https://doi.org/10.1103/PhysRevB.104.L161115
263 Wang Q., J. Neubauer K., Duan C., Yin Q., Fujitsu S., Hosono H., Ye F., Zhang R., Chi S., Krycka K., Lei H., Dai P.. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic Kagomé antiferromagnetic compound YMn6Sn6.Phys. Rev. B, 2021, 103: 014416
https://doi.org/10.1103/PhysRevB.103.014416
264 Kabir F., Filippone R., Dhakal G., Lee Y., Poudel N., Casey J., P. Sakhya A., Regmi S., Smith R., Manfrinetti P., Ke L., Gofryk K., Neupane M., K. Pathak A.. Unusual magnetic and transport properties in HoMn6Sn6 Kagomé magnet.Phys. Rev. Mater., 2022, 6(6): 064404
https://doi.org/10.1103/PhysRevMaterials.6.064404
265 Lee J., Mun E., 0 magnetic property of single crystals RV6Sn6 (R=Y. Lu).Phys. Rev. Mater., 2022, 6(8): 083401
https://doi.org/10.1103/PhysRevMaterials.6.083401
266 Peng S., Han Y., Pokharel G., Shen J., Li Z., Hashimoto M., Lu D., R. Ortiz B., Luo Y., Li H., Guo M., Wang B., Cui S., Sun Z., Qiao Z., D. Wilson S., He J., RealizingKagomé band structure in two-dimensional Kagomé surface states of RV6Sn6 (R=Gd. Ho).Phys. Rev. Lett., 2021, 127(26): 266401
https://doi.org/10.1103/PhysRevLett.127.266401
267 Hu Y., Wu X., Yang Y., Gao S., C. Plumb N., P. Schnyder A., Xie W., Ma J., Shi M.. Tunable topological Dirac surface states and van Hove singularities in Kagomé metal GdV6Sn6.Sci. Adv., 2022, 8: eadd2024
https://doi.org/10.1126/sciadv.add2024
268 Cheng E., Xia W., Shi X., Fang H., Wang C., Xi C., Xu S., C. Peets D., Wang L., Su H., Pi L., Ren W., Wang X., Yu N., Chen Y., Zhao W., Liu Z., Guo Y., Li S.. Magnetism-induced topological transition in EuAs3.Nat. Commun., 2021, 12(1): 6970
https://doi.org/10.1038/s41467-021-26482-7
269 Bauhofer W., Wittmann M., G. v Schnering H., Structure properties of CaAs3. BaAs3 and EuAs3.J. Phys. Chem. Solids, 1981, 42(8): 687
https://doi.org/10.1016/0022-3697(81)90122-0
270 Chattopadhyay T., G. v. Schnering H., J. Brown P.. Neutron diffraction study of the magnetic ordering in EuAs3.J. Magn. Magn. Mater., 1982, 28(3): 247
https://doi.org/10.1016/0304-8853(82)90056-7
271 Chattopadhyay T., J. Brown P.. Field-induced transverse-sine-wave-to-longitudinal-sine-wave transition in EuAs3.Phys. Rev. B, 1988, 38(1): 795
https://doi.org/10.1103/PhysRevB.38.795
272 Chatterji T., D. Liß K., Tschentscher T., Janossy B., Strempfer J., Brückel T.. High-energy non-resonant X-ray magnetic scattering from EuAs3.Solid State Commun., 2004, 131(11): 713
https://doi.org/10.1016/j.ssc.2004.06.026
273 Chatterji T., Henggeler W.. μSR investigation of the magnetic ordering in EuAs3.Solid State Commun., 2004, 132(9): 617
https://doi.org/10.1016/j.ssc.2004.08.033
274 Bauhofer W., A. McEwen K.. Anisotropic magnetoresistance of the semimetallic antiferromagnet EuAs3.Phys. Rev. B, 1991, 43(16): 13450
https://doi.org/10.1103/PhysRevB.43.13450
275 Elcoro L., J. Wieder B., Song Z., Xu Y., Bradlyn B., A. Bernevig B.. Magnetic topological quantum chemistry.Nat. Commun., 2021, 12(1): 5965
https://doi.org/10.1038/s41467-021-26241-8
276 Xu Y., Elcoro L., D. Song Z., J. Wieder B., G. Vergniory M., Regnault N., Chen Y., Felser C., A. Bernevig B.. High-throughput calculations of magnetic topological materials.Nature, 2020, 586(7831): 702
https://doi.org/10.1038/s41586-020-2837-0
277 Haruki W., H. Chun P., Ashvin V.. Structure and topology of band structures in the 1651 magnetic space groups.Sci. Adv., 2018, 4: eaat8685
https://doi.org/10.1126/sciadv.aat8685
278 Gao J., Guo Z., Weng H., Wang Z., band representations Magnetic. Fu−Kane-like symmetry indicators, and magnetic topological materials.Phys. Rev. B, 2022, 106(3): 035150
https://doi.org/10.1103/PhysRevB.106.035150
279 Choudhary K., F. Garrity K., J. Ghimire N., Anand N., Tavazza F.. High-throughput search for magnetic topological materials using spin−orbit spillage, machine learning, and experiments.Phys. Rev. B, 2021, 103(15): 155131
https://doi.org/10.1103/PhysRevB.103.155131
280 Bouhon A., F. Lange G., J. Slager R.. Topological correspondence between magnetic space group representations and subdimensions.Phys. Rev. B, 2021, 103(24): 245127
https://doi.org/10.1103/PhysRevB.103.245127
281 Gooth J., Bradlyn B., Honnali S., Schindler C., Kumar N., Noky J., Qi Y., Shekhar C., Sun Y., Wang Z., A. Bernevig B., Felser C.. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I.Nature, 2019, 575(7782): 315
https://doi.org/10.1038/s41586-019-1630-4
282 Šmejkal L., H. MacDonald A., Sinova J., Nakatsuji S., Jungwirth T.. Anomalous Hall antiferromagnets.Nat. Rev. Mater., 2022, 7(6): 482
https://doi.org/10.1038/s41578-022-00430-3
283 Šmejkal L., Sinova J., Jungwirth T.. Emerging research landscape of altermagnetism.Phys. Rev. X, 2022, 12(4): 040501
https://doi.org/10.1103/PhysRevX.12.040501
284 Šmejkal L., Sinova J., Jungwirth T.. Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry.Phys. Rev. X, 2022, 12(3): 031042
https://doi.org/10.1103/PhysRevX.12.031042
285 J. Ghimire N., S. Botana A., S. Jiang J., Zhang J., S. Chen Y., F. Mitchell J.. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6.Nat. Commun., 2018, 9(1): 3280
https://doi.org/10.1038/s41467-018-05756-7
286 Šmejkal L., B. Hellenes A., González-Hernández R., Sinova J., Jungwirth T.. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin−momentum coupling.Phys. Rev. X, 2022, 12(1): 011028
https://doi.org/10.1103/PhysRevX.12.011028
287 Feng Z., Zhou X., Šmejkal L., Wu L., Zhu Z., Guo H., González-Hernández R., Wang X., Yan H., Qin P., Zhang X., Wu H., Chen H., Meng Z., Liu L., Xia Z., Sinova J., Jungwirth T., Liu Z.. An anomalous Hall effect in altermagnetic ruthenium dioxide.Nat. Electron., 2022, 5(11): 735
https://doi.org/10.1038/s41928-022-00866-z
288 Schrunk B., Kushnirenko Y., Kuthanazhi B., Ahn J., L. Wang L., O’Leary E., Lee K., Eaton A., Fedorov A., Lou R., Voroshnin V., J. Clark O., Sanchez-Barriga J., L. Bud’ko S., J. Slager R., C. Canfield P., Kaminski A.. Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet.Nature, 2022, 603(7902): 610
https://doi.org/10.1038/s41586-022-04412-x
289 Karube S., Tanaka T., Sugawara D., Kadoguchi N., Kohda M., Nitta J.. Observation of spin-splitter torque in collinear antiferromagnetic RuO2.Phys. Rev. Lett., 2022, 129(13): 137201
https://doi.org/10.1103/PhysRevLett.129.137201
290 Bai H., Han L., Y. Feng X., J. Zhou Y., X. Su R., Wang Q., Y. Liao L., X. Zhu W., Z. Chen X., Pan F., L. Fan X., Song C.. Observation of spin splitting torque in a collinear antiferromagnet RuO2.Phys. Rev. Lett., 2022, 128(19): 197202
https://doi.org/10.1103/PhysRevLett.128.197202
291 F. Shao D., H. Zhang S., Li M., B. Eom C., Y. Tsymbal E.. Spin-neutral currents for spintronics.Nat. Commun., 2021, 12(1): 7061
https://doi.org/10.1038/s41467-021-26915-3
292 González-Hernández R., Smejkal L., Vyborny K., Yahagi Y., Sinova J., Jungwirth T., Zelezny J.. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism.Phys. Rev. Lett., 2021, 126(12): 127701
https://doi.org/10.1103/PhysRevLett.126.127701
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed