Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (1): 13604   https://doi.org/10.1007/s11467-022-1254-2
  本期目录
Two-dimensional MXenes and their applications
Guangcun Shan1,2(), Zejian Ding1, Yury Gogotsi3()
1. School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100091, China
2. Institute of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
3. A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
 全文: PDF(2323 KB)   HTML
收稿日期: 2022-12-31      出版日期: 2023-02-03
Corresponding Author(s): Guangcun Shan,Yury Gogotsi   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(1): 13604.
Guangcun Shan, Zejian Ding, Yury Gogotsi. Two-dimensional MXenes and their applications. Front. Phys. , 2023, 18(1): 13604.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1254-2
https://academic.hep.com.cn/fop/CN/Y2023/V18/I1/13604
Fig.1  
Fig.2  
1 Naguib M. , Kurtoglu M. , Presser V. , Lu J. , Niu J. , Heon M. , Hultman L. , Gogotsi Y. , W. Barsoum M. . Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37): 4248
https://doi.org/10.1002/adma.201102306
2 Anayee M. , Kurra N. , Alhabeb M. , Seredych M. , N. Hedhili M. , Emwas A. , N. Alshareef H. , Anasori B. , Gogotsi Y. . Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti3C2Tx MXene. Chem. Commun. (Camb.), 2020, 56(45): 6090
https://doi.org/10.1039/D0CC01042A
3 VahidMohammadi A. , Rosen J. , Gogotsi Y. . The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372: eabf1581
https://doi.org/10.1126/science.abf1581
4 Zhang J. , Cui Z. , Liu J. , Li C. , Tan H. , Shan G. , Ma R. . Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond. Front. Phys., 2023, 18(1): 13603
https://doi.org/10.1007/s11467-022-1208-8
5 Liu B. , Qian L. , Zhao Y. , Zhang Y. , Liu F. , Zhang Y. , Xie Y. , Shi W. . A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects. Front. Phys., 2022, 17(5): 53501
https://doi.org/10.1007/s11467-022-1156-3
6 Qin R. , Shan G. , Hu M. , Huang W. . Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys., 2021, 21: 100527
https://doi.org/10.1016/j.mtphys.2021.100527
7 Kim H. , N. Alshareef H. . MXetronics: MXene-enabled electronic and photonic devices. ACS Mater. Lett., 2020, 2: 55
https://doi.org/10.1021/acsmaterialslett.9b00419
8 Hu M. , Zhang N. , Shan G. , Gao J. , Liu J. , K. Y. Li R. . Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys., 2018, 13(4): 138113
https://doi.org/10.1007/s11467-018-0809-8
9 Liao Q. , Liu H. , Chen Z. , Zhang Y. , Xiong R. , Cui Z. , Wen C. , Sa B. . Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance. Front. Phys., 2023, 18(3): 33300
https://doi.org/10.1007/s11467-022-1234-6
10 S. Novoselov K. , Andreeva D. , Ren W. , Shan G. . Graphene and other two-dimensional materials. Front. Phys., 2019, 14(1): 13301
https://doi.org/10.1007/s11467-018-0835-6
11 Gao G. , Ding G. , Li J. , Yao K. , Wu M. , Qian M. . Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale, 2016, 8(16): 8986
https://doi.org/10.1039/C6NR01333C
12 Frey N. , Bandyopadhyay A. , Kumar H. , Anasori B. , Gogotsi Y. , Shenoy V. . Surface engineered MXenes: Electric field control of magnetism and enhanced magnetic anisotropy. ACS Nano, 2019, 13(3): 2831
https://doi.org/10.1021/acsnano.8b09201
13 Zhao M. , Chen J. , S. Wang S. , An M. , Dong S. . Multiferroic properties of oxygen-functionalized magnetic i-MXene. Phys. Rev. Mater., 2021, 5(9): 094408
https://doi.org/10.1103/PhysRevMaterials.5.094408
14 Hantanasirisakul K. , Anasori B. , Nemsak S. , L. Hart J. , Wu J. , Yang Y. , V. Chopdekar R. , Shafer P. , F. May A. , J. Moon E. , Zhou J. , Zhang Q. , L. Taheri M. , J. May S. , Gogotsi Y. . Evidence of magnetic transition in atomically thin Cr2TiC2Tx MXene. Nanoscale Horiz., 2020, 5(12): 1557
https://doi.org/10.1039/D0NH00343C
15 Zhang Y. , Cui Z. , Sa B. , Miao N. , Zhou J. , Sun Z. . Computational design of double transition metal MXenes with intrinsic magnetic properties. Nanoscale Horiz., 2022, 7(3): 276
https://doi.org/10.1039/D1NH00621E
16 Kamysbayev V. , S. Filatov A. , Hu H. , Rui X. , Lagunas F. , Wang D. , F. Klie R. , V. Talapin D. . Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369(6506): 979
https://doi.org/10.1126/science.aba8311
17 Zhang X. , Gong P. , Liu F. , Yao K. , Wu J. , Zhu S. . High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2). Front. Phys., 2022, 17(5): 53510
https://doi.org/10.1007/s11467-022-1184-z
18 S. Novoselov K.Mishchenko A.Carvalho A.H. Castro Neto A., 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
19 Yan Z. , H. Jiang Z. , P. Lu J. , H. Ni Z. . Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13(4): 138115
https://doi.org/10.1007/s11467-018-0785-z
20 K. El-Demellawi J. , Lopatin S. , Yin J. , F. Mohammed O. , N. Alshareef H. . Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano, 2018, 12(8): 8485
https://doi.org/10.1021/acsnano.8b04029
21 Kyriakou G. , B. Boucher M. , D. Jewell A. , A. Lewis E. , J. Lawton T. , E. Baber A. , L. Tierney H. , Flyzani-Stephanopoulos M. , C. H. Sykes E. . Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209
https://doi.org/10.1126/science.1215864
22 Ono M. , Hata M. , Tsunekawa M. , Nozaki K. , Sumikura H. , Chiba H. , Notomi M. . Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics, 2020, 14(1): 37
https://doi.org/10.1038/s41566-019-0547-7
23 Zhang Y. , Zhang F. , Du B. , Chen H. , Wageh S. , A. Al-Hartomy O. , G. Al-Sehemi A. , Zhang B. , Zhang H. . Au/MXene based ultrafast all-optical switching. Front. Phys., 2023, 18(3): 33301
https://doi.org/10.1007/s11467-022-1248-0
24 Li X. , Shan G. , Ma R. , H. Shek C. , Zhao H. , Ramakrishna S. . Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications. Front. Phys., 2022, 17(6): 63501
https://doi.org/10.1007/s11467-022-1181-2
25 Qin R. , Hu M. , Li X. , Yan L. , Wu C. , Liu J. , Gao H. , Shan G. , Huang W. . A highly sensitive piezoresistive sensor based on MXene and polyvinyl butyral with a wide detection limit and low power consumption. Nanoscale, 2020, 12(34): 17715
https://doi.org/10.1039/D0NR02012E
26 Zhang L. , He J. , Liao Y. , Zeng X. , Qiu N. , Liang Y. , Xiao P. , Chen T. . A self-protective, reproducible textile sensor with high performance towards human–machine interactions. J. Mater. Chem. A, 2019, 7(46): 26631
https://doi.org/10.1039/C9TA10744D
27 Zhu Z. , W. H. Ng D. , S. Park H. , C. McAlpine M. . 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater., 2020, 6(1): 27
https://doi.org/10.1038/s41578-020-00235-2
28 Qin R.C. Shan G.Li X.C. Li J.Ramakrishna S., MXene-based flexible and wearable electronics for personal healthcare monitoring, in: International Conference on Frontier Materials 2022 (2022), doi: icfm.2022.5.29/14.10.D03
29 Gogotsi Y. , Huang Q. . MXenes: Two-dimensional building blocks for future materials and devices. ACS Nano, 2021, 15(4): 5775
https://doi.org/10.1021/acsnano.1c03161
30 Anasori B. , Gogotsi Y. . MXenes: Trends, growth, and future directions. Graphene and 2D Mater., 2022, 7: 75
https://doi.org/10.1007/s41127-022-00053-z
31 P. Michałowski P. , Anayee M. , S. Mathis T. , Kozdra S. , Wójcik A. , Hantanasirisakul K. , Jóźwik I. , Piatkowska A. , Możdżonek M. , Malinowska A. , Diduszko R. , Wierzbicka E. , Gogotsi Y. . Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat. Nanotechnol., 2022, 17(11): 1192
https://doi.org/10.1038/s41565-022-01214-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed