Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (4): 43603   https://doi.org/10.1007/s11467-023-1265-7
  本期目录
Insight into the growth mechanism of black phosphorus
Yongjie Wang1,2, Qiang Yu2, Jie Li2, Junyong Wang2, Kai Zhang2()
1. Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
2. CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
 全文: PDF(9325 KB)   HTML
Abstract

Two-dimensional (2D) black phosphorus (BP) has attracted great attention in recent years in fundamental research as well as optoelectronics applications. The controllable synthesis of high-quality BP is vital to the investigation of its intrinsic physical properties and versatile applications. Originally, BP was mostly synthesized under high temperatures and pressures. Subsequently, metal flux, wet chemical and chemical vapor transport (CVT) methods had been appeared successively. The pulsed laser deposition (PLD) and CVT methods have been used to prepare high-quality BP thin films on silicon substrates, which is significant for its monolithic integration and practical applications. To meet the demand of the scalable applications of BP, the direct preparation of BP films on dielectric substrates that avoids additional transfer process, is crucial to high-performance device implementation. In this review, the growing methods and corresponding mechanisms of BP are summarized and analyzed. Meanwhile, the view on the controllable growth of large-area, high-quality BP films is envisioned.

Key wordsblack phosphorus    growth mechanism    nucleation    thin films
收稿日期: 2022-11-09      出版日期: 2023-03-15
Corresponding Author(s): Kai Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(4): 43603.
Yongjie Wang, Qiang Yu, Jie Li, Junyong Wang, Kai Zhang. Insight into the growth mechanism of black phosphorus. Front. Phys. , 2023, 18(4): 43603.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1265-7
https://academic.hep.com.cn/fop/CN/Y2023/V18/I4/43603
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
MethodGrowth parameterMorphologyMerits or faultsRef.
HTHPWP, 200 ℃, 1.2 GPa, 30 minsWP, 200 ℃, 1.3 GPa, few minsbulkcomplex experimental equipment and conditions[92, 93]
Metal fluxWP and Hg, 370–410 ℃, several daysWP and Bi, 400 ℃, 20 hmillimeter plate crystalslow purity and toxic[61, 62]
Ball millingWP, stainless steel ball, 1 hpowderylow yield[63]
Wet chemicalWP and ethylene diamine, 60–140 °Csheet-like structuremild reaction condition[67]
Chemical vapor transportRP/Sn/SnI4, 650 ℃RP/Au/SnI4, 600 ℃, 5?10 daysAu film/Sn/SnI4, 750 ℃, 1 hbulk or filmhigh quality crystals[69, 70, 83]
Tab.1  
1 Pfitzner A. , F. Brau M. , Zweck J. , Brunklaus G. , Eckert H. . Phosphorus nanorods-two allotropic modifications of a long-known element. Angew. Chem. Int. Ed., 2004, 43(32): 4228
https://doi.org/10.1002/anie.200460244
2 Bachhuber F. , von Appen J. , Dronskowski R. , Schmidt P. , Nilges T. , Pfitzner A. , Weihrich R. . Die erweiterte stabilitätsreihe der phosphorallotropee. Angew. Chem., 2014, 126(43): 11813
https://doi.org/10.1002/ange.201404147
3 Ruck M. , Hoppe D. , Wahl B. , Simon P. , Wang Y. , Seifert G. . Faserförmiger roter phosphor. Angew. Chem., 2005, 117(46): 7788
https://doi.org/10.1002/ange.200503017
4 Eckstein N. , Hohmann A. , Weihrich R. , Nilges T. , Schmidt P. . Synthesis and phase relations of single-phase fibrous phosphorus. Z. Anorg. Allg. Chem., 2013, 639(15): 2741
https://doi.org/10.1002/zaac.201300327
5 Natta G. , Passerini L. . The crystal structure of white phosphorus. Nature, 1930, 125(3158): 707
https://doi.org/10.1038/125707b0
6 L. Keiter R. , P. Gamage C. . Combustion of white phosphorus. J. Chem. Educ., 2001, 78(7): 908
https://doi.org/10.1021/ed078p908
7 Zhang S. , J. Qian H. , Liu Z. , Ju H. , Y. Lu Z. , Zhang H. , Chi L. , Cui S. . Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies. Angew. Chem. Int. Ed., 2019, 58(6): 1659
https://doi.org/10.1002/anie.201811152
8 M. Fung C. , C. Er C. , L. Tan L. , R. Mohamed A. , P. Chai S. . Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation. Chem. Rev., 2022, 122(3): 3879
https://doi.org/10.1021/acs.chemrev.1c00068
9 Sun Z. , Zhang B. , Zhao Y. , Khurram M. , Yan Q. . exfoliation, and transport properties of quasi-1D van der Waals fibrous red phosphorus. Chem. Mater., 2021, 33(15): 6240
https://doi.org/10.1021/acs.chemmater.1c02136
10 Zhu Z. , Cui P. , Cai X. , Xia M. , Jia Y. , Zhang S. , Zhang Z. . Red phosphorus in its two-dimensional limit: Novel clathrates with varying band gaps and superior chemical stabilities. Nanoscale, 2018, 10(29): 13969
https://doi.org/10.1039/C8NR02877J
11 Hittorf W. . Zur Kenntniss des Phosphors. Annalen der Physik und Chemie, 1865, 202(10): 193
https://doi.org/10.1002/andp.18652021002
12 Zhang L. , Huang H. , Lv Z. , Li L. , Gu M. , Zhao X. , Zhang B. , Cheng Y. , Zhang J. . Phonon properties of bulk violet phosphorus single crystals: Temperature and pressure evolution. ACS Appl. Electron. Mater., 2021, 3(3): 1043
https://doi.org/10.1021/acsaelm.0c00731
13 Zhang L. , Huang H. , Zhang B. , Gu M. , Zhao D. , Zhao X. , Li L. , Zhou J. , Wu K. , Cheng Y. , Zhang J. . Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem. Int. Ed., 2020, 59(3): 1074
https://doi.org/10.1002/anie.201912761
14 Zhang L. , Gu M. , Li L. , Zhao X. , Fu C. , Liu T. , Xu X. , Cheng Y. , Zhang J. . High yield synthesis of violet phosphorus crystals. Chem. Mater., 2020, 32(17): 7363
https://doi.org/10.1021/acs.chemmater.0c02273
15 Zhao R. , Liu S. , Zhao X. , Gu M. , Zhang Y. , Jin M. , Wang Y. , Cheng Y. , Zhang J. . Violet phosphorus quantum dots. J. Mater. Chem. A, 2021, 10(1): 245
https://doi.org/10.1039/D1TA09132H
16 Chen X. , S. Ponraj J. , Fan D. , Zhang H. . An overview of the optical properties and applications of black phosphorus. Nanoscale, 2020, 12(6): 3513
https://doi.org/10.1039/C9NR09122J
17 Gusmão R. , Sofer Z. , Pumera M. . Black phosphorus rediscovered: From bulk material to monolayers. Angew. Chem. Int. Ed., 2017, 56(28): 8052
https://doi.org/10.1002/anie.201610512
18 C. Jamieson J. . Crystal structures adopted by black phosphorus at high pressures. Science, 1963, 139(356): 1291
https://doi.org/10.1126/science.139.3561.1291
19 Lei W. , Liu G. , Zhang J. , Liu M. . Black phosphorus nanostructures: Recent advances in hybridization, doping and functionalization. Chem. Soc. Rev., 2017, 46(12): 3492
https://doi.org/10.1039/C7CS00021A
20 W. Bridgman P. . Two new modifications of phosphorus. J. Am. Chem. Soc., 1914, 36(7): 1344
https://doi.org/10.1021/ja02184a002
21 M. L. P. A. G. O’hare B. , M. Lewis B. , Shirotani I. . Thermodynamic stability of orthorhombic black phosphorus. Thermochim. Acta, 1988, 129(1): 57
https://doi.org/10.1016/0040-6031(88)87196-X
22 Zhao M. , Qian H. , Niu X. , Wang W. , Guan L. , Sha J. , Wang Y. . Growth mechanism and enhanced yield of black phosphorus microribbons. Cryst. Growth Des., 2016, 16(2): 1096
https://doi.org/10.1021/acs.cgd.5b01709
23 Li L. , Yu Y. , J. Ye G. , Ge Q. , Ou X. , Wu H. , Feng D. , H. Chen X. , Zhang Y. . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
https://doi.org/10.1038/nnano.2014.35
24 Tran V. , Soklaski R. , Liang Y. , Yang L. . Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 2014, 89(23): 235319
https://doi.org/10.1103/PhysRevB.89.235319
25 Liu X. , W. Ang K. , Yu W. , He J. , Feng X. , Liu Q. , Jiang H. , Tang Dan , Wen J. , Lu Y. , Liu W. , Cao P. , Han S. , Wu J. , Liu W. , Wang X. , Zhu D. , He Z. . Black phosphorus based field effect transistors with simultaneously achieved near ideal subthreshold swing and high hole mobility at room temperature. Sci. Rep., 2016, 6(1): 24920
https://doi.org/10.1038/srep24920
26 Long G. , Maryenko D. , Shen J. , Xu S. , Hou J. , Wu Z. , K. Wong W. , Han T. , Lin J. , Cai Y. , Lortz R. , Wang N. . Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett., 2016, 16(12): 7768
https://doi.org/10.1021/acs.nanolett.6b03951
27 Xu Y. , Yuan J. , Zhang K. , Hou Y. , Sun Q. , Yao Y. , Li S. , Bao Q. , Zhang H. , Zhang Y. . Field-induced N-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater., 2017, 27(38): 1702211
https://doi.org/10.1002/adfm.201702211
28 Feng X. , Huang X. , Chen L. , C. Tan W. , Wang L. , W. Ang K. . High mobility anisotropic black phosphorus nanoribbon field-effect transistor. Adv. Funct. Mater., 2018, 28(28): 1801524
https://doi.org/10.1002/adfm.201801524
29 Wang G. , Guo Z. , Chen C. , Yu W. , Xu B. , Lin B. . Exploring a high-carrier-mobility black phosphorus/MoSe2 heterostructure for high-efficiency thin film solar cells. Sol. Energy, 2022, 236: 576
https://doi.org/10.1016/j.solener.2022.03.008
30 Buscema M. , J. Groenendijk D. , I. Blanter S. , A. Steele G. , S. van der Zant H. , Castellanos-Gomez A. . Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 2014, 14(6): 3347
https://doi.org/10.1021/nl5008085
31 Zhu W. , N. Yogeesh M. , Yang S. , H. Aldave S. , S. Kim J. , Sonde S. , Tao L. , Lu N. , Akinwande D. . Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett., 2015, 15(3): 1883
https://doi.org/10.1021/nl5047329
32 Sobiesierski Z. , T. Phillips R. . A time-resolved photoluminescence study of amorphous phosphorus. Solid State Commun., 1986, 60(1): 25
https://doi.org/10.1016/0038-1098(86)90008-6
33 J. Suess R. , D. Hart J. , Leong E. , Mittendorff M. , E. Murphy T. . Black phosphorus frequency mixer for infrared optoelectronic signal processing. APL Photonics, 2019, 4(3): 034502
https://doi.org/10.1063/1.5046732
34 Hu G. , Albrow-Owen T. , Jin X. , Ali A. , Hu Y. , C. T. Howe R. , Shehzad K. , Yang Z. , Zhu X. , I. Woodward R. , C. Wu T. , Jussila H. , B. Wu J. , Peng P. , H. Tan P. , Sun Z. , J. R. Kelleher E. , Zhang M. , Xu Y. , Hasan T. . Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun., 2017, 8(1): 278
https://doi.org/10.1038/s41467-017-00358-1
35 Chen X. , Lu X. , Deng B. , Sinai O. , Shao Y. , Li C. , Yuan S. , Tran V. , Watanabe K. , Taniguchi T. , Naveh D. , Yang L. , Xia F. . Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun., 2017, 8(1): 1672
https://doi.org/10.1038/s41467-017-01978-3
36 Valt M. , Caporali M. , Fabbri B. , Gaiardo A. , Krik S. , Iacob E. , Vanzetti L. , Malagu C. , Banchelli M. , D’Andrea C. , Serrano-Ruiz M. , Vanni M. , Peruzzini M. , Guidi V. . Air stable nickel-decorated black phosphorus and its room-temperature chemiresistive gas sensor capabilities. ACS Appl. Mater. Interfaces, 2021, 13(37): 44711
https://doi.org/10.1021/acsami.1c10763
37 An D. , Zhang X. , Bi Z. , Shan W. , Zhang H. , Xia S. , Qiu M. . Low‐dimensional black phosphorus in sensor applications: Advances and challenges. Adv. Funct. Mater., 2021, 31(52): 2106484
https://doi.org/10.1002/adfm.202106484
38 Sun J. , Sun Y. , Pasta M. , Zhou G. , Li Y. , Liu W. , Xiong F. , Cui Y. . Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv. Mater., 2016, 28(44): 9797
https://doi.org/10.1002/adma.201602172
39 Wang Y. , He M. , Ma S. , Yang C. , Yu M. , Yin G. , Zuo P. . Low-temperature solution synthesis of black phosphorus from red phosphorus: Crystallization mechanism and lithium ion battery applications. J. Phys. Chem. Lett., 2020, 11(7): 2708
https://doi.org/10.1021/acs.jpclett.0c00746
40 Zhu J. , Xiao G. , Zuo X. . Two-dimensional black phosphorus: An emerging anode material for lithium-ion batteries. Nano-Micro Lett., 2020, 12(1): 120
https://doi.org/10.1007/s40820-020-00453-x
41 Bai L. , Wang X. , Tang S. , Kang Y. , Wang J. , Yu Y. , K. Zhou Z. , Ma C. , Zhang X. , Jiang J. , K. Chu P. , F. Yu X. . Black phosphorus/platinum heterostructure: A highly efficient photocatalyst for solar-driven chemical reactions. Adv. Mater., 2018, 30(40): 1803641
https://doi.org/10.1002/adma.201803641
42 Miao J. , Zhang L. , Wang C. . Black phosphorus electronic and optoelectronic devices. 2D Mater., 2019, 6(3): 032003
https://doi.org/10.1088/2053-1583/ab1ebd
43 Yin T. , Long L. , Tang X. , Qiu M. , Liang W. , Cao R. , Zhang Q. , Wang D. , Zhang H. . Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation. Adv. Sci. (Weinh.), 2020, 7(19): 2001431
https://doi.org/10.1002/advs.202001431
44 Zhang L. , Wang B. , Zhou Y. , Wang C. , Chen X. , Zhang H. . Synthesis techniques, optoelectronic properties, and broadband photodetection of thin‐film black phosphorus. Adv. Opt. Mater., 2020, 8(15): 2000045
https://doi.org/10.1002/adom.202000045
45 Xie Z. , Peng M. , Lu R. , Meng X. , Liang W. , Li Z. , Qiu M. , Zhang B. , Nie G. , Xie N. , Zhang H. , N. Prasad P. . Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. Light Sci. Appl., 2020, 9(1): 161
https://doi.org/10.1038/s41377-020-00388-3
46 Xing C. , Chen S. , Qiu M. , Liang X. , Liu Q. , Zou Q. , Li Z. , Xie Z. , Wang D. , Dong B. , Liu L. , Fan D. , Zhang H. . Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater., 2018, 7(7): 1701510
https://doi.org/10.1002/adhm.201701510
47 Yin F. , Hu K. , Chen S. , Wang D. , Zhang J. , Xie M. , Yang D. , Qiu M. , Zhang H. , G. Li Z. . Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B, 2017, 5(27): 5433
https://doi.org/10.1039/C7TB01068K
48 O. Island J. , A. Steele G. , S. J. v. d. Zant H. , Castellanos-Gomez A. . Environmental instability of few-layer black phosphorus. 2D Mater., 2015, 2(1): 011002
https://doi.org/10.1088/2053-1583/2/1/011002
49 Y. Illarionov Y. , Waltl M. , Rzepa G. , S. Kim J. , Kim S. , Dodabalapur A. , Akinwande D. , Grasser T. . Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano, 2016, 10(10): 9543
https://doi.org/10.1021/acsnano.6b04814
50 K. Sang D. , Wang H. , Guo Z. , Xie N. , Zhang H. . Recent developments in stability and passivation techniques of phosphorene toward next‐generation device applications. Adv. Funct. Mater., 2019, 29(45): 1903419
https://doi.org/10.1002/adfm.201903419
51 Favron A. , Gaufres E. , Fossard F. , L. Phaneuf-L’Heureux A. , Y. Tang N. , L. Levesque P. , Loiseau A. , Leonelli R. , Francoeur S. , Martel R. . Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater., 2015, 14(8): 826
https://doi.org/10.1038/nmat4299
52 Kim G. , Kim D. , Choi Y. , Ghorai A. , Park G. , Jeong U. . New approaches to produce large-area single crystal thin films. Adv. Mater., 2022, 35(4): 2203373
https://doi.org/10.1002/adma.202203373
53 Zavabeti A. , Jannat A. , Zhong L. , A. Haidry A. , Yao Z. , Z. Ou J. . Two-dimensional materials in large-areas: Synthesis, properties and applications. Nano-Micro Lett., 2020, 12(1): 66
https://doi.org/10.1007/s40820-020-0402-x
54 S. Novoselov K. , Jiang D. , Schedin F. , J. Booth T. , V. Khotkevich V. , V. Morozov S. , K. Geim A. . Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA, 2005, 102(30): 10451
https://doi.org/10.1073/pnas.0502848102
55 Liu H. , T. Neal A. , Zhu Z. , Luo Z. , Xu X. , Tománek D. , D. Ye P. . Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033
https://doi.org/10.1021/nn501226z
56 Lu W. , Nan H. , Hong J. , Chen Y. , Zhu C. , Liang Z. , Ma X. , Ni Z. , Jin C. , Zhang Z. . Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res., 2014, 7(6): 853
https://doi.org/10.1007/s12274-014-0446-7
57 Kang J. , A. Wells S. , D. Wood J. , Lee J.-H. , Liu X. , R. Ryder C. , Zhu J. , R Guest Jeffrey , A. Husko C. , C. Hersam M. . Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA, 2016, 113(42): 11688
https://doi.org/10.1073/pnas.1602215113
58 Hanlon D. , Backes C. , Doherty E. , S. Cucinotta C. , C. Berner N. , Boland C. , Lee K. , Harvey A. , Lynch P. , Gholamvand Z. , Zhang S. , Wang K. , Moynihan G. , Pokle A. , M. Ramasse Q. , McEvoy N. , J. Blau W. , Wang J. , Abellan G. , Hauke F. , Hirsch A. , Sanvito S. , D. O’Regan D. , S. Duesberg G. , Nicolosi V. , N. Coleman J. . Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun., 2015, 6(1): 8563
https://doi.org/10.1038/ncomms9563
59 Yasaei P. , Kumar B. , Foroozan T. , Wang C. , Asadi M. , Tuschel D. , E. Indacochea J. , F. Klie R. , Salehi-Khojin A. . High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater., 2015, 27(11): 1887
https://doi.org/10.1002/adma.201405150
60 Wang X. , M. Jones A. , L. Seyler K. , Tran V. , Jia Y. , Zhao H. , Wang H. , Yang L. , Xu X. , Xia F. . Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol., 2015, 10: 517
https://doi.org/10.1038/nnano.2015.71
61 Q. Sun L. , J. Li M. , Sun K. , H. Yu S. , S. Wang R. , M. Xie H. . Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J. Phys. Chem. C, 2012, 116(28): 14772
https://doi.org/10.1021/jp302265n
62 Antonatos N. , Bousa D. , Shcheka S. , M. Beladi-Mousavi S. , Pumera M. , Sofer Z. . In situ doping of black phosphorus by high-pressure synthesis. Inorg. Chem., 2019, 58(15): 10227
https://doi.org/10.1021/acs.inorgchem.9b01398
63 Xiang H. , T. Nie Y. , C. Zheng H. , H. Sun X. , L. Sun X. , Song Y. . The mechanism of structural changes and crystallization kinetics of amorphous red phosphorus to black phosphorus under high pressure. Chem. Commun. (Camb.), 2019, 55(56): 8094
https://doi.org/10.1039/C9CC02194A
64 Akahama Y. , Miyakawa M. , Taniguchi T. , Sano-Furukawa A. , Machida S. , Hattori T. . Structure refinement of black phosphorus under high pressure. J. Chem. Phys., 2020, 153(1): 014704
https://doi.org/10.1063/5.0012870
65 K. Burdett J. , Lee S. . The pressure-induced black phosphorus to A7 (arsenic) phase transformation: An analysis using the concept of orbital symmetry conservation. J. Solid State Chem., 1982, 44(3): 415
https://doi.org/10.1016/0022-4596(82)90390-5
66 Scelta D. , Baldassarre A. , Serrano-Ruiz M. , Dziubek K. , B. Cairns A. , Peruzzini M. , Bini R. , Ceppatelli M. . Interlayer bond formation in black phosphorus at high pressure. Angew. Chem. Int. Ed., 2017, 56: 14135
https://doi.org/10.1002/anie.201708368
67 Krebs H. , Weitz H. , H. Worms K. . Über die struktur und die eigenschaften der halbmetalle. VIII. Die katalytische darstellung des schwarzen phosphors. Z. Anorg. Allg. Chem., 1955, 280(1–3): 119
https://doi.org/10.1002/zaac.19552800110
68 Baba M. , Izumida F. , Takeda Y. , Morita A. . Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology. Jpn. J. Appl. Phys., 1989, 28(6R): 1019
https://doi.org/10.1143/JJAP.28.1019
69 Nagao M. , Hayashi A. , Tatsumisago M. . All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. J. Power Sources, 2011, 196(16): 6902
https://doi.org/10.1016/j.jpowsour.2010.12.055
70 Zhou F. , Ouyang L. , Zeng M. , Liu J. , Wang H. , Shao H. , Zhu M. . Growth mechanism of black phosphorus synthesized by different ball milling techniques. J. Alloys Compd., 2019, 784: 339
https://doi.org/10.1016/j.jallcom.2019.01.023
71 Zhu X. , Zhang T. , Sun Z. , Chen H. , Guan J. , Chen X. , Ji H. , Du P. , Yang S. . Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv. Mater., 2017, 29(17): 1605776
https://doi.org/10.1002/adma.201605776
72 V. Chien N. , Shin H. , Y. Song J. . Sn-assisted solid state crystallization of red phosphorus to black phosphorus. Scr. Mater., 2020, 177: 128
https://doi.org/10.1016/j.scriptamat.2019.10.022
73 Tian B. , Tian B. , Smith B. , C. Scott M. , Lei Q. , Hua R. , Tian Y. , Liu Y. . Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl. Acad. Sci. USA, 2018, 115(17): 4345
https://doi.org/10.1073/pnas.1800069115
74 Tian B. , Tian B. , Smith B. , C. Scott M. , Hua R. , Lei Q. , Tian Y. . Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat. Commun., 2018, 9(1): 1397
https://doi.org/10.1038/s41467-018-03737-4
75 Nilges T. , Kersting M. , Pfeifer T. . A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem., 2008, 181(8): 1707
https://doi.org/10.1016/j.jssc.2008.03.008
76 Lange S. , Schmidt P. , Nilges T. . Au3SnP7@black phosphorus: An easy access to black phosphorus. Inorg. Chem., 2007, 46(10): 4028
https://doi.org/10.1021/ic062192q
77 T. Johra F. , G. Jung W. . Synthesis of black phosphorus via a facile vapor transfer method. Electron. Mater. Lett., 2019, 15(5): 639
https://doi.org/10.1007/s13391-019-00162-7
78 Izquierdo N. , C. Myers J. , C. A. Seaton N. , K. Pandey S. , A. Campbell S. . Thin-film deposition of surface passivated black phosphorus. ACS Nano, 2019, 13(6): 7091
https://doi.org/10.1021/acsnano.9b02385
79 Wentink M. , Gaberle J. , Aghajanian M. , A. Mostofi A. , J. Curson N. , Lischner J. , R. Schofield S. , L. Shluger A. , J. Kenyon A. . Substitutional tin acceptor states in black phosphorus. J. Phys. Chem. C, 2021, 125(41): 22883
https://doi.org/10.1021/acs.jpcc.1c07115
80 Antonatos N. , Sturala J. , Mazanek V. , Sedmidubsky D. , Vesely M. , Ruzicka K. , Hejtmanek J. , Levinsky P. , Sofer Z. . Black phosphorus: Fundamental properties and influence of impurities induced by its synthesis. ACS Appl. Mater. Interfaces, 2022, 14(30): 34867
https://doi.org/10.1021/acsami.2c08714
81 Xu Q. , Zhu Y. , Shi C. , Zhang N. , Xie T. . The preparation of black phosphorus in RP/Sn/I2 system: its nucleation agent and relatively optimal temperature program. J. Mater. Sci. Mater. Electron., 2020, 31(21): 19093
https://doi.org/10.1007/s10854-020-04446-9
82 M. Shatruk M. , A. Kovnir K. , V. Shevelkov A. , A. Presniakov I. , A. Popovkin B. . First tin pnictide halides Sn24P19.3I8 and Sn24As19.3I8: Synthesis and the clathrate-i type of the crystal structure. Inorg. Chem., 1999, 38(15): 3455
https://doi.org/10.1021/ic990153r
83 V. Novikov V. , V. Matovnikov A. , V. Avdashchenko D. , V. Mitroshenkov N. , Dikarev E. , Takamizawa S. , A. Kirsanova M. , V. Shevelkov A. . Low-temperature structure and lattice dynamics of the thermoelectric clathrate Sn24P19.3I8. J. Alloys Compd., 2012, 520: 174
https://doi.org/10.1016/j.jallcom.2011.12.171
84 Li S. , Liu X. , Fan X. , Ni Y. , Miracle J. , Theodoropoulou N. , Sun J. , Chen S. , Lv B. , Yu Q. . New strategy for black phosphorus crystal growth through ternary clathrate. Cryst. Growth Des., 2017, 17(12): 6579
https://doi.org/10.1021/acs.cgd.7b01239
85 Chen Z. , Zhu Y. , Lei J. , Liu W. , Xu Y. , Feng P. . A stage-by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization. CrystEngComm, 2017, 19(47): 7207
https://doi.org/10.1039/C7CE01492A
86 Zhang Z. , H. Xing D. , Li J. , Yan Q. . Hittorf’s phosphorus: The missing link during transformation of red phosphorus to black phosphorus. CrystEngComm, 2017, 19(6): 905
https://doi.org/10.1039/C6CE02550A
87 Tiouitchi G. , A. Ali M. , Benyoussef A. , Hamedoun M. , Lachgar A. , Benaissa M. , Kara A. , Ennaoui A. , Mahmoud A. , Boschini F. , Oughaddou H. , El Kenz A. , Mounkachi O. . An easy route to synthesize high-quality black phosphorus from amorphous red phosphorus. Mater. Lett., 2019, 236: 56
https://doi.org/10.1016/j.matlet.2018.10.019
88 Yu Y. , Xing B. , Wang D. , Guan L. , Niu X. , Yao J. , Yan X. , Zhang S. , Liu Y. , Wu X. , Sha J. , Wang Y. . Improvement in the quality of black phosphorus by selecting a mineralizer. Nanoscale, 2019, 11(42): 20081
https://doi.org/10.1039/C9NR06583K
89 Xu Y. , Shi X. , Zhang Y. , Zhang H. , Zhang Q. , Huang Z. , Xu X. , Guo J. , Zhang H. , Sun L. , Zeng Z. , Pan A. , Zhang K. . Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun., 2020, 11(1): 1330
https://doi.org/10.1038/s41467-020-14902-z
90 Han D. , Liu Q. , Zhang Q. , Ji J. , Sang S. , Xu B. . Synthesis of highly crystalline black phosphorus thin films on GaN. Nanoscale, 2020, 12(48): 24429
https://doi.org/10.1039/D0NR06764D
91 Wu Z. , Lyu Y. , Zhang Y. , Ding R. , Zheng B. , Yang Z. , P. Lau S. , H. Chen X. , Hao J. . Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater., 2021, 20(9): 1203
https://doi.org/10.1038/s41563-021-01001-7
92 R. Willmott P. , R. Huber J. . Pulsed laser vaporization and deposition. Rev. Mod. Phys., 2000, 72(1): 315
https://doi.org/10.1103/RevModPhys.72.315
93 Yang Z. , Hao J. . Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mater. Chem. C, 2016, 4(38): 8859
https://doi.org/10.1039/C6TC01602B
94 Yang Z. , Hao J. , Yuan S. , Lin S. , M. Yau H. , Dai J. , P. Lau S. . Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater., 2015, 27(25): 3748
https://doi.org/10.1002/adma.201500990
95 B. Smith J. , Hagaman D. , F. Ji H. . Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology, 2016, 27(21): 215602
https://doi.org/10.1088/0957-4484/27/21/215602
96 Li X. , Deng B. , Wang X. , Chen S. , Vaisman M. , Karato S.-I. , Pan G. , L. Lee M. , Cha J. , Wang H. , Xia F. . Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater., 2015, 2(3): 031002
https://doi.org/10.1088/2053-1583/2/3/031002
97 Li C. , Wu Y. , Deng B. , Xie Y. , Guo Q. , Yuan S. , Chen X. , Bhuiyan M. , Wu Z. , Watanabe K. , Taniguchi T. , Wang H. , J. Cha J. , Snure M. , Fei Y. , Xia F. . Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater., 2018, 30(6): 1703748
https://doi.org/10.1002/adma.201703748
98 R. Ryder C. , D. Wood J. , A. Wells S. , Yang Y. , Jariwala D. , J. Marks T. , C. Schatz G. , C. Hersam M. . Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem., 2016, 8(6): 597
https://doi.org/10.1038/nchem.2505
99 Zhao Y. , Wang H. , Huang H. , Xiao Q. , Xu Y. , Guo Z. , Xie H. , Shao J. , Sun Z. , Han W. , F. Yu X. , Li P. , K. Chu P. . Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed., 2016, 16(55): 5003
https://doi.org/10.1002/anie.201512038
100 Y. Illarionov Y. , Waltl M. , Rzepa G. , Knobloch T. , S. Kim J. , Akinwande D. , Grasser T. . Highly-stable black phosphorus field-effect transistors with low density of oxide traps. npj 2D Mater. Appl., 2017, 1(1):
https://doi.org/10.1038/s41699-017-0025-3
101 D. Wood J. , A. Wells S. , Jariwala D. , S. Chen K. , Cho E. , K. Sangwan V. , Liu X. , J. Lauhon L. , J. Marks T. , C. Hersam M. . Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett., 2014, 14(12): 6964
https://doi.org/10.1021/nl5032293
102 Wan B. , Yang B. , Wang Y. , Zhang J. , Zeng Z. , Liu Z. , Wang W. . Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology, 2015, 26(43): 435702
https://doi.org/10.1088/0957-4484/26/43/435702
103 Xu Y. , Yuan J. , Fei L. , Wang X. , Bao Q. , Wang Y. , Zhang K. , Zhang Y. . Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small, 2016, 12(36): 5000
https://doi.org/10.1002/smll.201600692
104 Yang B. , Wan B. , Zhou Q. , Wang Y. , Hu W. , Lv W. , Chen Q. , Zeng Z. , Wen F. , Xiang J. , Yuan S. , Wang J. , Zhang B. , Wang W. , Zhang J. , Xu B. , Zhao Z. , Tian Y. , Liu Z. . Te-doped black phosphorus field-effect transistors. Adv. Mater., 2016, 28(42): 9408
https://doi.org/10.1002/adma.201603723
105 Zhao M. , Niu X. , Guan L. , Qian H. , Wang W. , Sha J. , Wang Y. . Understanding the growth of black phosphorus crystals. CrystEngComm, 2016, 18(40): 7737
https://doi.org/10.1039/C6CE01608A
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed