Demonstration of fully-connected quantum communication network exploiting entangled sideband modes
Fan Li1, Xiaoli Zhang1, Jianbo Li1, Jiawei Wang1, Shaoping Shi1(), Long Tian1,2, Yajun Wang1,2, Lirong Chen1, Yaohui Zheng1,2()
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China 2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Quantum communication network scales point-to-point quantum communication protocols to more than two detached parties, which would permit a wide variety of quantum communication applications. Here, we demonstrate a fully-connected quantum communication network, exploiting three pairs of Einstein−Podolsky−Rosen (EPR) entangled sideband modes, with high degree entanglement of 8.0 dB, 7.6 dB, and 7.2 dB. Each sideband modes from a squeezed field are spatially separated by demultiplexing operation, then recombining into new group according to network requirement. Each group of sideband modes are distributed to one of the parties via a single physical path, making sure each pair of parties build their own private communication links with high channel capacity better than any classical scheme.
Weedbrook C. , Pirandola S. , García-Patrón R. , J. Cerf N. , C. Ralph T. , H. Shapiro J. , Lloyd S. . Gaussian quantum information. Rev. Mod. Phys., 2012, 84(2): 621 https://doi.org/10.1103/RevModPhys.84.621
Furusawa A. , Takei N. . Quantum teleportation for continuous variables and related quantum information processing. Phys. Rep., 2007, 443(3): 97 https://doi.org/10.1016/j.physrep.2007.03.001
5
Liu T. , Q. Guo B. , H. Zhou Y. , L. Zhao J. , L. Fang Y. , C. Wu Q. , P. Yang C. . Transfer of quantum entangled states between superconducting qubits and microwave field qubits. Front. Phys., 2022, 17(6): 61502 https://doi.org/10.1007/s11467-022-1166-1
Pezzè L. , Smerzi A. , K. Oberthaler M. , Schmied R. , Treutlein P. . Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005 https://doi.org/10.1103/RevModPhys.90.035005
Takeda S. , Furusawa A. . Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics, 2019, 4(6): 060902 https://doi.org/10.1063/1.5100160
11
Cheng B. , H. Deng X. , Gu X. , He Y. , C. Hu G. , H. Huang P. , Li J. , C. Lin B. , W. Lu D. , Lu Y. , D. Qiu C. , Wang H. , Xin T. , Yu S. , H. Yung M. , K. Zeng J. , Zhang S. , P. Zhong Y. , H. Peng X. , Nori F. , P. Yu D. . Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308
Grosshans F. , Van Assche G. , Wenger J. , Brouri R. , J. Cerf N. , Grangier P. . Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003, 421: 238 https://doi.org/10.1038/nature01289
14
K. Liao S. , Q. Cai W. , Handsteiner J. , Liu B. , Yin J. , Zhang L. , Rauch D. , Fink M. , G. Ren J. , Y. Liu W. , Li Y. , Shen Q. , Cao Y. , Z. Li F. , F. Wang J. , M. Huang Y. , Deng L. , Xi T. , Ma L. , Hu T. , Li L. , L. Liu N. , Koidl F. , Wang P. , A. Chen Y. , B. Wang X. , Steindorfer M. , Kirchner G. , Y. Lu C. , Shu R. , Ursin R. , Scheidl T. , Z. Peng C. , Y. Wang J. , Zeilinger A. , W. Pan J. . Satellite-relayed intercontinental quantum network. Phys. Rev. Lett., 2018, 120(3): 030501 https://doi.org/10.1103/PhysRevLett.120.030501
15
Y. Liu H. , H. Tian X. , Gu C. , Fan P. , Ni X. , Yang R. , N. Zhang J. , Hu M. , Guo J. , Cao X. , Hu X. , Zhao G. , Q. Lu Y. , X. Gong Y. , Xie Z. , N. Zhu S. . Optical-relayed entanglement distribution using drones as mobile nodes. Phys. Rev. Lett., 2021, 126(2): 020503 https://doi.org/10.1103/PhysRevLett.126.020503
16
Yonezawa H. , Aoki T. , Furusawa A. . Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431(7007): 430 https://doi.org/10.1038/nature02858
17
Y. Chen T. , Wang J. , Liang H. , Y. Liu W. , Liu Y. , Jiang X. , Wang Y. , Wan X. , Q. Cai W. , Ju L. , K. Chen L. , J. Wang L. , Gao Y. , Chen K. , Z. Peng C. , B. Chen Z. , W. Pan J. . Metropolitan all-pass and inter-city quantum communication network. Opt. Express, 2010, 18(26): 27217 https://doi.org/10.1364/OE.18.027217
18
Wang W. , Zhang K. , T. Jing J. . Large-scale quantum network over 66 orbital angular momentum optical modes. Phys. Rev. Lett., 2020, 125(14): 140501 https://doi.org/10.1103/PhysRevLett.125.140501
19
Huo N. , Liu Y. , Li J. , Cui L. , Chen X. , Palivela R. , Xie T. , Li X. , Y. Ou Z. . Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Phys. Rev. Lett., 2020, 124(21): 213603 https://doi.org/10.1103/PhysRevLett.124.213603
20
Wang X. , Fu J. , Liu S. , Wei Y. , Jing J. . Self-healing of multipartite entanglement in optical quantum net-works. Optica, 2022, 9(6): 663 https://doi.org/10.1364/OPTICA.458939
21
Asavanant W. , Shiozawa Y. , Yokoyama S. , Charoensombutamon B. , Emura H. , N. Alexander R. , Takeda S. , Yoshikawa J. , C. Menicucci N. , Yonezawa H. , Furusawa A. . Generation of time-domain-multiplexed two-dimensional cluster state. Science, 2019, 366(6463): 373 https://doi.org/10.1126/science.aay2645
22
V. Larsen M. , Guo X. , R. Breum C. , S. Neergaard-Nielsen J. , L. Andersen U. . Deterministic generation of a two-dimensional cluster state. Science, 2019, 366(6463): 369 https://doi.org/10.1126/science.aay4354
23
Liu Y. , Huo N. , Li J. , Li X. . Long-distance distribution of the telecom band intensity difference squeezing generated in a fiber optical parametric amplifier. Opt. Lett., 2018, 43(22): 5559 https://doi.org/10.1364/OL.43.005559
24
Zhuang Q. , Zhang Z. , H. Shapiro J. . Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A, 2018, 97(3): 032329 https://doi.org/10.1103/PhysRevA.97.032329
D. Wu X. , J. Wang Y. , Zhong H. , Liao Q. , Guo Y. . Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys., 2019, 14(4): 41501 https://doi.org/10.1007/s11467-019-0881-8
27
P. Shi S. , Tian L. , J. Wang Y. , H. Zheng Y. , D. Xie C. , C. Peng K. . Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys. Rev. Lett., 2020, 125(7): 070502 https://doi.org/10.1103/PhysRevLett.125.070502
28
D. Black E. . An introduction to Pound−Drever−Hall laser frequency stabilization. Am. J. Phys., 2001, 69(1): 79 https://doi.org/10.1119/1.1286663
29
H. Yang W. , P. Shi S. , J. Wang Y. , G. Ma W. , H. Zheng Y. , C. Peng K. . Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt. Lett., 2017, 42(21): 4553 https://doi.org/10.1364/OL.42.004553
30
Tian L. , P. Shi S. , H. Tian Y. , J. Wang Y. , H. Zheng Y. , C. Peng K. . Resource reduction for simultaneous generation of two types of continuous variable nonclassical states. Front. Phys., 2021, 16(2): 21502 https://doi.org/10.1007/s11467-020-1012-2
31
Roslund J. , M. de Ara’ujo R. , Jiang S. , Fabre C. , Treps N. . Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics, 2014, 8(2): 109 https://doi.org/10.1038/nphoton.2013.340
32
Yonezawa H. , L. Braunstein S. , Furusawa A. . Experimental demonstration of quantum teleportation of broadband squeezing. Phys. Rev. Lett., 2007, 99(11): 110503 https://doi.org/10.1103/PhysRevLett.99.110503
33
Ast S. , Samblowski A. , Mehmet M. , Steinlechner S. , Eberle T. , Schnabel R. . Continuous-wave nonclassical light with gigahertz squeezing bandwidth. Opt. Lett., 2012, 37(12): 2367 https://doi.org/10.1364/OL.37.002367
34
Ast S. , Ast M. , Mehmet M. , Schnabel R. . Gaussian entanglement distribution with gigahertz bandwidth. Opt. Lett., 2016, 41(21): 5094 https://doi.org/10.1364/OL.41.005094
35
Mattle K. , Weinfurter H. , G. Kwiat P. , Zeilinger A. . Dense coding in experimental quantum communication. Phys. Rev. Lett., 1996, 76(25): 4656 https://doi.org/10.1103/PhysRevLett.76.4656
L. Jin X. , Su J. , H. Zheng Y. , Y. Chen C. , Z. Wang W. , C. Peng K. . Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt. Express, 2015, 23(18): 23859 https://doi.org/10.1364/OE.23.023859
38
M. Duan L. , Giedke G. , I. Cirac J. , Zoller P. . Inseparability criterion for continuous variable systems. Phys. Rev. Lett., 2000, 84(12): 2722 https://doi.org/10.1103/PhysRevLett.84.2722
39
T. Jing J. , Zhang J. , Yan Y. , G. Zhao F. , D. Xie C. , C. Peng K. . Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 2003, 90(16): 167903 https://doi.org/10.1103/PhysRevLett.90.167903
40
Yokoyama S. , Ukai R. , C. Armstrong S. , Sornphiphatphong C. , Kaji T. , Suzuki S. , Yoshikawa J. , Yonezawa H. , C. Menicucci N. , Furusawa A. . Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photonics, 2013, 7(12): 982 https://doi.org/10.1038/nphoton.2013.287
41
Mizuno J. , Wakui K. , Furusawa A. , Sasaki M. . Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state. Phys. Rev. A, 2005, 71(1): 012304 https://doi.org/10.1103/PhysRevA.71.012304
42
Stefszky M. , Ricken R. , Eigner C. , Quiring V. , Herrmann H. , Silberhorn C. . Waveguide cavity resonator as a source of optical squeezing. Phys. Rev. Appl., 2017, 7(4): 044026 https://doi.org/10.1103/PhysRevApplied.7.044026
43
Dutt A. , Miller S. , Luke K. , Cardenas J. , L. Gaeta A. , Nussenzveig P. , Lipson M. . Tunable squeezing using coupled ring resonators on a silicon nitride chip. Opt. Lett., 2016, 41(2): 223 https://doi.org/10.1364/OL.41.000223
44
S. Levy J. , Gondarenko A. , A. Foster M. , C. Turner-Foster A. , L. Gaeta A. , Lipson M. . CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 2010, 4(1): 37 https://doi.org/10.1038/nphoton.2009.259
45
Masada G. , Miyata K. , Politi A. , Hashimoto T. , L. O’Brien J. , Furusawa A. . Continuous-variable entanglement on a chip. Nat. Photonics, 2015, 9(5): 316 https://doi.org/10.1038/nphoton.2015.42