Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (5): 53304   https://doi.org/10.1007/s11467-023-1298-y
  本期目录
Itinerant to relocalized transition of f electrons in the Kondo insulator CeRu4Sn6
Fan-Ying Wu1, Qi-Yi Wu1, Chen Zhang1, Yang Luo1, Xiangqi Liu2, Yuan-Feng Xu3, Dong-Hui Lu4, Makoto Hashimoto4, Hao Liu1, Yin-Zou Zhao1, Jiao-Jiao Song1, Ya-Hua Yuan1, Hai-Yun Liu5, Jun He1, Yu-Xia Duan1, Yan-Feng Guo2,6(), Jian-Qiao Meng1()
1. School of Physics and Electronics, Central South University, Changsha 410083, China
2. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
3. Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou 310058, China
4. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
5. Beijing Academy of Quantum Information Sciences, Beijing 100085, China
6. ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
 全文: PDF(5708 KB)   HTML
Abstract

The three-dimensional electronic structure and the nature of Ce 4f electrons of the Kondo insulator CeRu4Sn6 are investigated by angle-resolved photoemission spectroscopy, utilizing tunable photon energies. Our results reveal (i) the three-dimensional k-space nature of the Fermi surface, (ii) the localized-to-itinerant transition of f electrons occurs at a much high temperature than the hybridization gap opening temperature, and (iii) the “relocalization” of itinerant f-electrons below 25 K, which could be the precursor to the establishment of magnetic order.

Key wordsKondo insulator    heavy fermion    ARPES    electronic structure    relocalization
收稿日期: 2023-02-16      出版日期: 2023-05-22
Corresponding Author(s): Yan-Feng Guo,Jian-Qiao Meng   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(5): 53304.
Fan-Ying Wu, Qi-Yi Wu, Chen Zhang, Yang Luo, Xiangqi Liu, Yuan-Feng Xu, Dong-Hui Lu, Makoto Hashimoto, Hao Liu, Yin-Zou Zhao, Jiao-Jiao Song, Ya-Hua Yuan, Hai-Yun Liu, Jun He, Yu-Xia Duan, Yan-Feng Guo, Jian-Qiao Meng. Itinerant to relocalized transition of f electrons in the Kondo insulator CeRu4Sn6. Front. Phys. , 2023, 18(5): 53304.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1298-y
https://academic.hep.com.cn/fop/CN/Y2023/V18/I5/53304
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 S. Riseborough P.. Heavy fermion semiconductors. Adv. Phys., 2000, 49(3): 257
https://doi.org/10.1080/000187300243345
2 G. Stewart S.. Heavy-fermion systems. Rev. Mod. Phys., 1984, 56(4): 755
https://doi.org/10.1103/RevModPhys.56.755
3 Coleman P., et al.., Handbook of Magnetism and Advanced Magnetic Materials, John Wiley & Sons, 2007
4 Dzero M., Sun K., Galitski V., Coleman P.. Topological Kondo insulators. Phys. Rev. Lett., 2010, 104(10): 106408
https://doi.org/10.1103/PhysRevLett.104.106408
5 Dzero M., Sun K., Coleman P., Galitski V.. Theory of topological Kondo insulators. Phys. Rev. B, 2012, 85(4): 045130
https://doi.org/10.1103/PhysRevB.85.045130
6 Lu F., Zhao J., Weng H., Fang Z., Dai X.. Correlated topological insulators with mixed valence. Phys. Rev. Lett., 2013, 110(9): 096401
https://doi.org/10.1103/PhysRevLett.110.096401
7 Jiang J., Li S., Zhang T., Sun Z., Chen F., R. Ye Z., Xu M., Q. Ge Q., Y. Tan S., H. Niu X., Xia M., P. Xie B., F. Li Y., H. Chen X., H. Wen H., L. Feng D.. Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission. Nat. Commun., 2013, 4(1): 3010
https://doi.org/10.1038/ncomms4010
8 Neupane M., Alidoust N., Y. Xu S., Kondo T., Ishida Y., J. Kim D., Liu C., Belopolski I., J. Jo Y., R. Chang T., T. Jeng H., Durakiewicz T., Balicas L., Lin H., Bansil A., Shin S., Fisk Z., Z. Hasan M.. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nat. Commun., 2013, 4(1): 2991
https://doi.org/10.1038/ncomms3991
9 Xu N., Shi X., K. Biswas P., E. Matt C., S. Dhaka R., Huang Y., C. Plumb N., Radović M., H. Dil J., Pomjakushina E., Conder K., Amato A., Salman Z., McK. Paul D., Mesot J., Ding H., Shi M.. Surface and bulk electronic structure of the strongly correlated system SmB6 and implications for a topological Kondo insulator. Phys. Rev. B, 2013, 88(12): 121102
https://doi.org/10.1103/PhysRevB.88.121102
10 Xu N., K. Biswas P., H. Dil J., S. Dhaka R., Landolt G., Muff S., E. Matt C., Shi X., C. Plumb N., Radović M., Pomjakushina E., Conder K., Amato A., V. Borisenko S., Yu R., M. Weng H., Fang Z., Dai X., Mesot J., Ding H., Shi M.. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun., 2014, 5(1): 4566
https://doi.org/10.1038/ncomms5566
11 Li G., Xiang Z., Yu F., Asaba T., Lawson B., Cai P., Tinsman C., Berkley A., Wolgast S., S. Eo Y., J. Kim D., Kurdak C., W. Allen J., Sun K., H. Chen X., Y. Wang Y., Fisk Z., Li L.. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science, 2014, 346(6214): 1208
https://doi.org/10.1126/science.1250366
12 Hartstein M., H. Toews W., T. Hsu Y., Zeng B., Chen X., C. Hatnean M., R. Zhang Q., Nakamura S., S. Padgett A., Rodway-Gant G., Berk J., K. Kingston M., H. Zhang G., K. Chan M., Yamashita S., Sakakibara T., Takano Y., H. Park J., Balicas L., Harrison N., Shitsevalova N., Balakrishnan G., G. Lonzarich G., W. Hill R., Sutherland M., E. Sebastian S.. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6. Nat. Phys., 2018, 14(2): 166
https://doi.org/10.1038/nphys4295
13 Lai H., E. Grefe S., Paschen S., Si Q.. Weyl–Kondo semimetal in heavy-fermion systems. Proc. Natl. Acad. Sci. USA, 2018, 115(1): 93
https://doi.org/10.1073/pnas.1715851115
14 Cao C., X. Zhi G., X. Zhu J.. From trivial Kondo insulator Ce3Pt3Bi4 to topological nodal-line semimetal Ce3Pd3Bi4. Phys. Rev. Lett., 2020, 124(16): 166403
https://doi.org/10.1103/PhysRevLett.124.166403
15 S. Kang J., G. Olson C., Inada Y., Ōnuki Y., K. Kwon S., I. Min B.. Valence-band photoemission study of single crystalline CeNiSn. Phys. Rev. B, 1998, 58(8): 4426
https://doi.org/10.1103/PhysRevB.58.4426
16 Nakamoto G.Takabatake T.Bando Y.Fujii H.Izawa K. Suzuki T.Fujita T.Minami A.Oguro I.T. Tai L. A. Menovsky A., Effect of impurity phases on the anisotropic transport properties of CeNiSn, Physica B 206–207, 840 (1995)
17 Stockert U., J. Sun P., Oeschler N., Steglich F., Takabatake T., Coleman P., Paschen S.. Giant isotropic Nernst effect in an anisotropic Kondo semimetal. Phys. Rev. Lett., 2016, 117(21): 216401
https://doi.org/10.1103/PhysRevLett.117.216401
18 M. Tomczak J.. Thermoelectricity in correlated narrow-gap semiconductors. J. Phys.: Condens. Matter, 2018, 30(18): 183001
https://doi.org/10.1088/1361-648X/aab284
19 Moreno J., Coleman P.. Gap-anisotropic model for the narrow-gap Kondo insulators. Phys. Rev. Lett., 2000, 84(2): 342
https://doi.org/10.1103/PhysRevLett.84.342
20 Kyogaku M.Kitaoka Y.Nakamura H.Asayama K.Takabatake T.Teshima F.Fujii H., NMR investigation of energy gap formation in the valence fluctuating compound CeNiSn, J. Phys. Soc. Jpn. 59(5), 1728 (1990)
21 Schlottmann P.. Impurity bands in Kondo insulators. Phys. Rev. B, 1992, 46(2): 998
https://doi.org/10.1103/PhysRevB.46.998
22 Winkler H., A. Lorenzer K., Prokofiev A., Paschen S.. Anisotropic electrical resistivity of the Kondo insulator CeRu4Sn6. J. Phys. Conf. Ser., 2012, 391: 012077
https://doi.org/10.1088/1742-6596/391/1/012077
23 Das I., V. Sampathkumaran E.. Electrical-resistance anomalies in a Ce−Ru−Sn phase. Phys. Rev. B, 1992, 46(7): 4250
https://doi.org/10.1103/PhysRevB.46.4250
24 Paschen S., Winkler H., Nezu T., Kriegisch M., Hilscher G., Custers J., Prokofiev A., Strydom A.. Anisotropy of the Kondo insulator CeRu4Sn6. J. Phys. Conf. Ser., 2010, 200(1): 012156
https://doi.org/10.1088/1742-6596/200/1/012156
25 Guritanu V., Wissgott P., Weig T., Winkler H., Sichelschmidt J., Scheffler M., Prokofiev A., Kimura S., Iizuka T., M. Strydom A., Dressel M., Steglich F., Held K., Paschen S.. Anisotropic optical conductivity of the putative Kondo insulator CeRu4Sn6. Phys. Rev. B, 2013, 87(11): 115129
https://doi.org/10.1103/PhysRevB.87.115129
26 Pöttgen R., D. Hoffmann R., Sampathkumaran E., Das I., Mosel B., Müllmann R.. Crystal structure, specific heat, and 119Sn Mössbauer spectroscopy of CeRu4Sn6: A ternary stannide with condensed, distorted RuSn6 octahedra. J. Solid State Chem., 1997, 134(2): 326
https://doi.org/10.1006/jssc.1997.7565
27 Brüning E., Brando M., Baenitz M., Bentien A., Strydom A., Walstedt R., Steglich F.. Low-temperature properties of CeRu4Sn6 from NMR and specific heat measurements: Heavy fermions emerging from a Kondo-insulating state. Phys. Rev. B, 2010, 82(12): 125115
https://doi.org/10.1103/PhysRevB.82.125115
28 Amorese A., Kummer K., B. Brookes N., Stockert O., T. Adroja D., E. M. Strydom A., Sidorenko A., Winkler H., A. Zocco D., Prokofiev A., Paschen S., W. Haverkort M., H. Tjeng L., Severing A.. Determining the local low-energy excitations in the Kondo semimetal CeRu4Sn6 using resonant inelastic X-ray scattering. Phys. Rev. B, 2018, 98(8): 081116
https://doi.org/10.1103/PhysRevB.98.081116
29 Sundermann M., Strigari F., Willers T., Winkler H., Prokofiev A., M. Ablett J., Rueff J., Schmitz D., Weschke E., M. Sala M., Al-Zein A., Tanaka A., W. Haverkort M., Kasinathan D., H. Tjeng L., Paschen S., Severing A.. CeRu4Sn6: A strongly correlated material with nontrivial topology. Sci. Rep., 2015, 5(1): 17937
https://doi.org/10.1038/srep17937
30 T. Fuhrman W., Sidorenko A., Hänel J., Winkler H., Prokofiev A., A. Rodriguez-Rivera J., Qiu Y., Blaha P., Si Q., L. Broholm C., Paschen S.. Pristine quantum criticality in a Kondo semimetal. Sci. Adv., 2021, 7(21): eabf9134
https://doi.org/10.1126/sciadv.abf9134
31 Strydom A.Guo Z.Paschen S.Viennois R.Steglich F., Electronic properties of semiconducting, Physica B 359–361, 293 (2005)
32 Brüning E.Baenitz M.Gippius A. Strydom A.Steglich F.Walstedt R., 119Sn NMR on the correlated semi-metal, J. Magn. Magn. Mater. 310(2), 393 (2007)
33 M. Strydom A., D. Hillier A., T. Adroja D., Paschen S., Steglich F.. Low-temperature muon spin relaxation measurements on CeRu4Sn6. J. Magn. Magn. Mater., 2007, 310(2): 377
https://doi.org/10.1016/j.jmmm.2006.10.084
34 Wissgott P., Held K.. Electronic structure of CeRu4Sn6: A density functional plus dynamical mean field theory study. Eur. Phys. J. B, 2016, 89(1): 5
https://doi.org/10.1140/epjb/e2015-60753-5
35 F. Xu Y., M. Yue C., M. Weng H., Dai X.. Heavy Weyl fermion state in CeRu4Sn6. Phys. Rev. X, 2017, 7(1): 011027
https://doi.org/10.1103/PhysRevX.7.011027
36 N. Strocov V.. Intrinsic accuracy in 3-dimensional photoemission band mapping. J. Electron Spectrosc. Relat. Phenom., 2003, 130(1−3): 65
https://doi.org/10.1016/S0368-2048(03)00054-9
37 Wadati H., Yoshida T., Chikamatsu A., Kumigashira H., Oshima M., Eisaki H., X. Shen Z., Mizokawa T., Fujimori A.. Angle-resolved photoemission spectroscopy of perovskite-type transition-metal oxides and their analyses using tight-binding band structure. Phase Transit., 2006, 79(8): 617
https://doi.org/10.1080/01411590600826672
38 X. Duan Y., Zhang C., Rusz J., M. Oppeneer P., Durakiewicz T., Sassa Y., Tjernberg O., Mänsson M., H. Berntsen M., Y. Wu F., Z. Zhao Y., J. Song J., Y. Wu Q., Luo Y., D. Bauer E., D. Thompson J., Q. Meng J.. Crystal electric field splitting and f-electron hybridization in heavy-fermion CePt2In7. Phys. Rev. B, 2019, 100(8): 085141
https://doi.org/10.1103/PhysRevB.100.085141
39 Fujimori S., Fujimori A., Shimada K., Narimura T., Kobayashi K., Namatame H., Taniguchi M., Harima H., Shishido H., Ikeda S., Aoki D., Tokiwa Y., Haga Y., Ōnuki Y.. Direct observation of a quasiparticle band in CeIrIn5: An angle-resolved photoemission spectroscopy study. Phys. Rev. B, 2006, 73(22): 224517
https://doi.org/10.1103/PhysRevB.73.224517
40 Y. Chen Q., F. Xu D., H. Niu X., Peng R., C. Xu H., H. P. Wen C., Liu X., Shu L., Y. Tan S., C. Lai X., J. Zhang Y., Lee H., N. Strocov V., Bisti F., Dudin P., X. Zhu J., Q. Yuan H., Kirchner S., L. Feng D.. Band dependent interlayer f-electron hybridization in CeRhIn5. Phys. Rev. Lett., 2018, 120(6): 066403
https://doi.org/10.1103/PhysRevLett.120.066403
41 Q. Meng J., M. Oppeneer P., A. Mydosh J., S. Riseborough P., Gofryk K., J. Joyce J., D. Bauer E., Li Y., Durakiewicz T.. Imaging the three-dimensional Fermi-surface pairing near the hidden-order transition in URu2Si2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett., 2013, 111(12): 127002
https://doi.org/10.1103/PhysRevLett.111.127002
42 Luo Y., Zhang C., Y. Wu Q., Y. Wu F., J. Song J., Xia W., F. Guo Y., Rusz J., M. Oppeneer P., Durakiewicz T., Z. Zhao Y., Liu H., X. Zhu S., H. Yuan Y., F. Tang X., He J., Y. Tan S., B. Huang Y., Sun Z., Liu Y., Y. Liu H., X. Duan Y., Q. Meng J.. Three-dimensional and temperature-dependent electronic structure of the heavy-fermion compound CePt2In7 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B, 2020, 101(11): 115129
https://doi.org/10.1103/PhysRevB.101.115129
43 Yao Q., Kaczorowski D., Swatek P., Gnida D., H. P. Wen C., H. Niu X., Peng R., C. Xu H., Dudin P., Kirchner S., Y. Chen Q., W. Shen D., L. Feng D.. Electronic structure and 4f-electron character in Ce2PdIn8 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B, 2019, 99(8): 081107
https://doi.org/10.1103/PhysRevB.99.081107
44 Wu Y., J. Zhang Y., Du F., Shen B., Zheng H., Fang Y., Smidman M., Cao C., Steglich F., Q. Yuan H., D. Denlinger J., Liu Y.. Anisotropic cf hybridization in the ferromagnetic quantum critical metal CeRh6Ge4. Phys. Rev. Lett., 2021, 126(21): 216406
https://doi.org/10.1103/PhysRevLett.126.216406
45 Zhou R., B. Luo X., F. Ding Z., Shu L., Y. Ji X., H. Zhu Z., B. Huang Y., W. Shen D., T. Liu Z., H. Liu Z., Zhang Y., Y. Chen Q.. Electronic structure of LaIrIn5 and f-electron character in its related Ce-115 compounds. Sci. China Phys. Mech. Astron., 2020, 63(11): 117012
https://doi.org/10.1007/s11433-019-1564-6
46 J. Song J., Luo Y., Zhang C., Y. Wu Q., Durakiewicz T., Sassa Y., Tjernberg O., Månsson M., H. Berntsen M., Z. Zhao Y., Liu H., X. Zhu S., T. Liu Z., Y. Wu F., Y. Liu S., D. Bauer E., Rusz J., M. Oppeneer P., H. Yuan Y., X. Duan Y., Q. Meng J.. The 4f-hybridization strength in CemMnIn3m+2n heavy-fermion compounds studied by angle-resolved photoemission spectroscopy. Chin. Phys. Lett., 2021, 38(10): 107402
https://doi.org/10.1088/0256-307X/38/10/107402
47 Koitzsch A., V. Borisenko S., Inosov D., Geck J., B. Zabolotnyy V., Shiozawa H., Knupfer M., Fink J., Büchner B., D. Bauer E., L. Sarrao J., Follath R.. Hybridization effects in CeCoIn5 observed by angle-resolved photoemission. Phys. Rev. B, 2008, 77(15): 155128
https://doi.org/10.1103/PhysRevB.77.155128
48 H. Yuan Y., X. Duan Y., Rusz J., Zhang C., J. Song J., Y. Wu Q., Sassa Y., Tjernberg O., Månsson M., H. Berntsen M., Y. Wu F., Y. Liu S., Liu H., X. Zhu S., T. Liu Z., Z. Zhao Y., H. Tobash P., D. Bauer E., D. Thompson J., M. Oppeneer P., Durakiewicz T., Q. Meng J.. Angle-resolved photoemission spectroscopy view on the nature of Ce 4f electrons in the antiferromagnetic Kondo lattice CePd5Al2. Phys. Rev. B, 2021, 103(12): 125122
https://doi.org/10.1103/PhysRevB.103.125122
49 Zhang Y., Feng W., Lou X., L. Yu T., G. Zhu X., Y. Tan S., K. Yuan B., Liu Y., Y. Lu H., H. Xie D., Liu Q., Zhang W., B. Luo X., B. Huang Y., Z. Luo L., J. Zhang Z., C. Lai X., Y. Chen Q.. Direct observation of heavy quasiparticles in the Kondo-lattice compound CeIn3. Phys. Rev. B, 2018, 97(4): 045128
https://doi.org/10.1103/PhysRevB.97.045128
50 F. Yang Y.. Two-fluid model for heavy electron physics. Rep. Prog. Phys., 2016, 79(7): 074501
https://doi.org/10.1088/0034-4885/79/7/074501
51 apRoberts-Warren N.P. Dioguardi A.C. Shockley A.H. Lin C.Crocker J.Klavins P. Pines D.-F. Yang Y.J. Curro N., Kondo liquid emergence and relocalization in the approach to antiferromagnetic ordering in CePt2In7, Phys. Rev. B 83, 060408(R) (2011)
52 R. Shirer K., C. Shockley A., P. Dioguardi A., Crocker J., H. Lin C., apRoberts-Warren N., M. Nisson D., Klavins P., C. Cooley J., F. Yang Y., J. Curro N.. Long range order and two-fluid behavior in heavy electron materials. Proc. Natl. Acad. Sci. USA, 2012, 109(45): E3067
https://doi.org/10.1073/pnas.1209609109
53 Li P.Q. Ye H. Hu Y.Fang Y. G. Xiao Z.Z. Wu Z.Y. Shan Z.P. Singh R.Balakrishnan G.W. Shen D.F. Yang Y.Cao C. C. Plumb N.Smidman M.Shi M.Kroha J.Q. Yuan H. Steglich F.Liu Y., ARPES signature of the competition between magnetic order and Kondo effect in CeCoGe3, Phys. Rev. B 107(20), L201104 (2023)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed