Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Breaking up bulk crystals of functional materials into nanoscale thinner layers can lead to interesting properties and enhanced functionalities due to the size and interface effects. However, unlike the van der Waals layered crystals, many materials cannot be exfoliated into thin layers by liquid exfoliation. BiFeO3 is a piezoelectric ceramic material, which is commonly synthesized as bulk crystals, limiting its wider applications. In this contribution, a freeze-drying assisted liquid exfoliation method was adopted to fabricate thin-layered BiFeO3 nanoplates with lateral sizes of up to 500 nm and thicknesses of 10−20 nm. The freeze-drying process showed a vital role in the preparation process by imposing stress on the dispersed BiFeO3 crystals during the liquid-to-solid-to-gas transition of the solvent. Such stress resulted in lattice strains in the freeze-dried BiFeO3 crystals, which enabled their further exfoliation under subsequent ultrasonication. Considering the intrinsic piezoelectric effect of BiFeO3, pressure sensors based on bulk and thin-layer BiFeO3 were also fabricated. The pressure sensor based on BiFeO3 nanoplates exhibited a largely enhanced sensitivity with a wider working range than the bulk counterpart, because of the stronger piezoelectric effect induced and the extra electrical charges at abundant interlayer interfaces. We suggest that the freeze-drying assisted liquid exfoliation method can be applied to other non-van der Waals crystals to bring about more functional material systems.
Tao L. , Zhang K. , Tian H. , Liu Y. , Y. Wang D. , Q. Chen Y. , Yang Y. , L. Ren T. . Graphene-paper pressure sensor for detecting human motions. ACS Nano, 2017, 11(9): 8790 https://doi.org/10.1021/acsnano.7b02826
2
Guan L. , Nilghaz A. , Su B. , Jiang L. , Cheng W. , Shen W. . Stretchable‐fiber‐confined wetting conductive liquids as wearable human health monitors. Adv. Funct. Mater., 2016, 26(25): 4511 https://doi.org/10.1002/adfm.201600443
3
M. Boutry C. , Beker L. , Kaizawa Y. , Vassos C. , Tran H. , C. Hinckley A. , Pfattner R. , Niu S. , Li J. , Claverie J. , Wang Z. , Chang J. , M. Fox P. , Bao Z. . Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng., 2019, 3(1): 47 https://doi.org/10.1038/s41551-018-0336-5
4
Li L.Zheng J.Chen J.Luo Z.Su Y.Tang W.Gao X.Li Y.Cao C.Liu Q.Kang X.Wang L.Li H., Flexible pressure sensors for biomedical applications: From ex vivo to in vivo, Adv. Mater. Interfaces 7(17), 2000743 (2020)
5
Kim D. , Lu N. , Ma R. , S. Kim Y. , H. Kim R. , Wang S. , Wu J. , M. Won S. , Tao H. , Islam A. , J. Yu K. , Kim T. , Chowdhury R. , Ying M. , Xu L. , Li M. , J. Chung H. , Keum H. , McCormick M. , Liu P. , W. Zhang Y. , G. Omenetto F. , Huang Y. , Coleman T. , A. Rogers J. . Epidermal electronics. Science, 2011, 333(6044): 838 https://doi.org/10.1126/science.1206157
6
C. B. Mannsfeld S. , C. K. Tee B. , M. Stoltenberg R. , V. H. H. Chen C. , Barman S. , V. O. Muir B. , N. Sokolov A. , Reese C. , Bao Z. . Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater., 2010, 9(10): 859 https://doi.org/10.1038/nmat2834
7
J. Lipomi D. , Vosgueritchian M. , C. K. Tee B. , L. Hellstrom S. , A. Lee J. , H. Fox C. , Bao Z. . Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol., 2011, 6(12): 788 https://doi.org/10.1038/nnano.2011.184
8
Fan F. , Lin L. , Zhu G. , Wu W. , Zhang R. , L. Wang Z. . Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett., 2012, 12(6): 3109 https://doi.org/10.1021/nl300988z
9
Ding Y. , Yang J. , R. Tolle C. , Zhu Z. . Flexible and compressible PEDOT: PSS@melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl. Mater. Interfaces, 2018, 10(18): 16077 https://doi.org/10.1021/acsami.8b00457
10
Shuai X. , Zhu P. , Zeng W. , Hu Y. , Liang X. , Zhang Y. , Sun R. , Wong C. . Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl. Mater. Interfaces, 2017, 9(31): 26314 https://doi.org/10.1021/acsami.7b05753
11
Maity K. , Garain S. , Henkel K. , Schmeißer D. , Mandal D. . Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor. ACS Appl. Polym. Mater., 2020, 2(2): 862 https://doi.org/10.1021/acsapm.9b00846
12
Xu S. , Qin Y. , Xu C. , Wei Y. , Yang R. , L. Wang Z. . Self-powered nanowire devices. Nat. Nanotechnol., 2010, 5(5): 366 https://doi.org/10.1038/nnano.2010.46
13
Lin L. , Xie Y. , Wang S. , Wu W. , Niu S. , Wen X. , L. Wang Z. . Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano, 2013, 7(9): 8266 https://doi.org/10.1021/nn4037514
14
Huang T. , Yang S. , He P. , Sun J. , Zhang S. , Li D. , Meng Y. , Zhou J. , Tang H. , Liang J. , Ding G. , Xie X. . Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors. ACS Appl. Mater. Interfaces, 2018, 10(36): 30732 https://doi.org/10.1021/acsami.8b10552
15
Ha M. , Lim S. , Park J. , S. Um D. , Lee Y. , Ko H. . Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater., 2015, 25(19): 2841 https://doi.org/10.1002/adfm.201500453
16
Kim Y. , Y. Lee K. , K. Hwang S. , Park C. , W. Kim S. , Cho J. . Layer-by-layer controlled perovskite nanocomposite thin films for piezoelectric nanogenerators. Adv. Funct. Mater., 2014, 24(40): 6262 https://doi.org/10.1002/adfm.201401599
17
Qi Y. , C. McAlpine M. . Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci., 2010, 3(9): 1275 https://doi.org/10.1039/c0ee00137f
18
Liu H.Zhong J.Lee C.W. Lee S.Lin L., A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications, Appl. Phys. Rev. 5(4), 041306 (2018)
19
G. Yeo H. , Xue T. , Roundy S. , Ma X. , Rahn C. , Trolier-McKinstry S. . Strongly (001) oriented bimorph PZT film on metal foils grown by RF‐sputtering for wrist‐worn piezoelectric energy harvesters. Adv. Funct. Mater., 2018, 28(36): 1801327 https://doi.org/10.1002/adfm.201801327
20
Yi J. , Liu L. , Shu L. , Huang Y. , F. Li J. . Outstanding ferroelectricity in sol–gel-derived polycrystalline BiFeO3 films within a wide thickness range. ACS Appl. Mater. Interfaces, 2022, 14(18): 21696 https://doi.org/10.1021/acsami.2c03137
21
Wang J. , B. Neaton J. , Zheng H. , Nagarajan V. , B. Ogale S. , Liu B. , Viehland D. , Vaithyanathan V. , G. Schlom D. , V. Waghmare U. , A. Spaldin N. , M. Rabe K. , Wuttig M. , Ramesh R. . Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299(5613): 1719 https://doi.org/10.1126/science.1080615
22
Silva J. , Reyes A. , Esparza H. , Camacho H. , Fuentes L. . BiFeO3: A review on synthesis, doping and crystal structure. Integr. Ferroelectr., 2011, 126(1): 47 https://doi.org/10.1080/10584587.2011.574986
23
Dai M. , Wang Z. , Wang F. , Qiu Y. , Zhang J. , Y. Xu C. , Zhai T. , Cao W. , Fu Y. , Jia D. , Zhou Y. , A. Hu P. . Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett., 2019, 19(8): 5410 https://doi.org/10.1021/acs.nanolett.9b01907
24
H. Lee M. , J. Kim D. , S. Park J. , W. Kim S. , K. Song T. , H. Kim M. , J. Kim W. , Do D. , K. Jeong I. . High-performance lead-free piezoceramics with high Curie temperatures. Adv. Mater., 2015, 27(43): 6976 https://doi.org/10.1002/adma.201502424
25
Shimizu K. , Hojo H. , Ikuhara Y. , Azuma M. . Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films. Adv. Mater., 2016, 28(39): 8639 https://doi.org/10.1002/adma.201602450
26
Shimizu K. , Hojo H. , Ikuhara Y. , Azuma M. . Piezoelectric materials: Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films. Adv. Mater., 2016, 28(39): 8785 https://doi.org/10.1002/adma.201670277
27
Hu P. , Yan L. , Zhao C. , Zhang Y. , Niu J. . Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property. Compos. Sci. Technol., 2018, 168: 327 https://doi.org/10.1016/j.compscitech.2018.10.021
28
N. Duerloo K.T. Ong M.J. Reed E., Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)
29
G. D. Zhao, T. Hu, L. Bellaiche , W. Ren. Liu, Structural and magnetic properties of two-dimensional layered BiFeO3 from first principles, Phys. Rev. B 103, 081403 (2021)
30
Yan H. , Deng H. , Ding N. , He J. , Peng L. , Sun L. , Yang P. , Chu J. . Influence of transition elements doping on structural, optical and magnetic properties of BiFeO3 films fabricated by magnetron sputtering. Mater. Lett., 2013, 111: 123 https://doi.org/10.1016/j.matlet.2013.08.075
31
Zhang X. , Deng J. , Yan J. , Song Y. , Mo Z. , Qian J. , Wu X. , Yuan S. , Li H. , Xu H. . Cryo-mediated liquid-phase exfoliated 2D BP coupled with 2D C3N4 to photodegradate organic pollutants and simultaneously generate hydrogen. Appl. Surf. Sci., 2019, 490: 117 https://doi.org/10.1016/j.apsusc.2019.05.246
32
Wang H. , Lv W. , Shi J. , Wang H. , Wang D. , Jin L. , Chao J. , A. van Aken P. , Chen R. , Huang W. . Efficient liquid nitrogen exfoliation of MoS2 ultrathin nanosheets in the pure 2H phase. ACS Sustain. Chem. & Eng., 2020, 8(1): 84 https://doi.org/10.1021/acssuschemeng.9b04057
33
Wang Y. , Liu Y. , Zhang J. , Wu J. , Xu H. , Wen X. , Zhang X. , S. Tiwary C. , Yang W. , Vajtai R. , Zhang Y. , Chopra N. , N. Odeh I. , Wu Y. , M. Ajayan P. . Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots. Sci. Adv., 2017, 3(12): 1701500 https://doi.org/10.1126/sciadv.1701500
34
Abroodi M. , Bagheri A. , M. Razavizadeh B. . Surface tension of binary and ternary systems containing monoethanolamine (MEA), water and alcohols (methanol, ethanol, and isopropanol) at 303.15 K. J. Chem. Eng. Data, 2020, 65(6): 3173 https://doi.org/10.1021/acs.jced.0c00192
35
Cesur S. , E. Cam M. , S. Sayin F. , Gunduz O. . Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer’s disease. J. Drug Deliv. Sci. Technol., 2022, 67: 102977 https://doi.org/10.1016/j.jddst.2021.102977
36
Ding H. , T. Khan S. , Zeng S. , Sun L. . Exfoliation of nanosized α-zirconium phosphate in methanol. Inorg. Chem., 2021, 60(11): 8276 https://doi.org/10.1021/acs.inorgchem.1c00968
37
Jonnalagadda K. , W. Cho S. , Chasiotis I. , Friedmann T. , Sullivan J. . Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS. J. Mech. Phys. Solids, 2008, 56(2): 388 https://doi.org/10.1016/j.jmps.2007.05.013
38
Park K. , H. Son J. , T. Hwang G. , K. Jeong C. , Ryu J. , Koo M. , Choi I. , H. Lee S. , Byun M. , L. Wang Z. , J. Lee K. . Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater., 2014, 26(16): 2514 https://doi.org/10.1002/adma.201305659
39
Barzegar A. , Damjanovic D. , Setter N. . Analytical modeling of the apparent d33 piezoelectric coefficient determined by the direct quasistatic method for different boundary conditions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, 52(11): 1897 https://doi.org/10.1109/TUFFC.2005.1561657
40
Dong J. , Ouyang G. . Edge effect on the piezoelectric characteristics of rectangular-shaped monolayer MSe2 (M = Cr, Mo, W) nanosheets. J. Phys. D Appl. Phys., 2021, 54(23): 235502 https://doi.org/10.1088/1361-6463/abecb3
41
Zhu Z.Zhang A.Ouyang G.Yang G., Edge effect on band gap shift in Si nanowires with polygonal cross-sections, Appl. Phys. Lett. 98(26), 263112 (2011)
42
Dong J.Ouyang G., Edge effect on the piezoelectric characteristics of rectangular-shaped monolayer MSe2 (M = Cr, Mo, W) nanosheets, J. Phys. D: Appl. Phys. 54(23), 235502 (2021)
43
Lee Y. , Park J. , Cho S. , E. Shin Y. , Lee H. , Kim J. , Myoung J. , Cho S. , Kang S. , Baig C. , Ko H. . Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano, 2018, 12(4): 4045 https://doi.org/10.1021/acsnano.8b01805