Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (5): 53305   https://doi.org/10.1007/s11467-023-1304-4
  本期目录
Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding
Fang Li1, Jun Fu2, Mingzhu Xue3, You Li1, Hualing Zeng2, Erjun Kan1, Ting Hu1(), Yi Wan1,3()
1. MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
2. International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
3. State Key Laboratory for Artificial Microstructure & Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
 全文: PDF(5330 KB)   HTML
Abstract

One variety of ferroelectricity that results from lateral relative movements between the adjacent atomic layers is referred to as sliding ferroelectricity, which generates an interfacial charge transfer and hence a polarization reversal. The mechanism of sliding ferroelectricity existent in van der Waals crystals is quite distinct from the conventional ferroelectric switching mechanisms mediated by ion displacement. It creates new possibilities for the design of two-dimensional (2D) ferroelectrics since it can be achieved even in non-polar systems. Before 2D ferroelectrics can be widely employed for practical implementations, however, there is still significant work to be done on several fronts, such as exploring ferroelectricity possibly in more potential 2D systems. Here, we report the experimental observation of room-temperature robust vertical ferroelectricity in layered semiconducting rhenium diselenide (ReSe2), a representative member of the transition metal dichalcogenides material family, based on a combined research of nanoscale piezoresponse and second harmonic generation measurements. While no such ferroelectric behavior was seen in 1L ReSe2, 2L ReSe2 exhibits vertical ferroelectricity at ambient environment. Based on density-functional theory calculations, we deduce that the microscopic origin of ferroelectricity for ReSe2 is uncompensated vertical charge transfer that is dependent on in-plane translation and switchable upon interlayer sliding. Our findings have important ramifications for the ongoing development of sliding ferroelectricity since the semiconducting properties and low switching barrier of ReSe2 open up the fascinating potential for functional nanoelectronics applications.

Key wordsrhenium diselenide    transition metal dichalcogenides    vertical ferroelectricity    sliding ferroelectricity
收稿日期: 2023-03-30      出版日期: 2023-06-07
Corresponding Author(s): Ting Hu,Yi Wan   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(5): 53305.
Fang Li, Jun Fu, Mingzhu Xue, You Li, Hualing Zeng, Erjun Kan, Ting Hu, Yi Wan. Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding. Front. Phys. , 2023, 18(5): 53305.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1304-4
https://academic.hep.com.cn/fop/CN/Y2023/V18/I5/53305
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 W. Martin L. , M. Rappe A. . Thin-film ferroelectric materials and their applications. Nat. Rev. Mater., 2016, 2(2): 16087
https://doi.org/10.1038/natrevmats.2016.87
2 Wu M., 100 years of ferroelectricity, Nat. Rev. Phys. 3, 726 (2021)
3 Guan Z. , Hu H. , Shen X. , Xiang P. , Zhong N. , Chu J. , Duan C. . Recent progress in two‐dimensional ferroelectric materials. Adv. Electron. Mater., 2020, 6(1): 1900818
https://doi.org/10.1002/aelm.201900818
4 Wang C. , You L. , Cobden D. , Wang J. . Towards two-dimensional van der Waals ferroelectrics. Nat. Mater., 2023, 22(5): 542
https://doi.org/10.1038/s41563-022-01422-y
5 Liu F. , You L. , L. Seyler K. , Li X. , Yu P. , Lin J. , Wang X. , Zhou J. , Wang H. , He H. , T. Pantelides S. , Zhou W. , Sharma P. , Xu X. , M. Ajayan P. , Wang J. , Liu Z. . Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun., 2016, 7(1): 12357
https://doi.org/10.1038/ncomms12357
6 Li Y. , Fu J. , Mao X. , Chen C. , Liu H. , Gong M. , Zeng H. . Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
https://doi.org/10.1038/s41467-021-26200-3
7 Zhou S. , You L. , Zhou H. , Pu Y. , Gui Z. , Wang J. . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
https://doi.org/10.1007/s11467-020-0986-0
8 Cui C. , J. Hu W. , Yan X. , Addiego C. , Gao W. , Wang Y. , Wang Z. , Li L. , Cheng Y. , Li P. , Zhang X. , N. Alshareef H. , Wu T. , Zhu W. , Pan X. , J. Li L. . Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett., 2018, 18(2): 1253
https://doi.org/10.1021/acs.nanolett.7b04852
9 Wan S. , Li Y. , Li W. , Mao X. , Wang C. , Chen C. , Dong J. , Nie A. , Xiang J. , Liu Z. , Zhu W. , Zeng H. . Nonvolatile ferroelectric memory effect in ultrathin α‐In2Se3. Adv. Funct. Mater., 2019, 29(20): 1808606
https://doi.org/10.1002/adfm.201808606
10 Cai Y.Yang J.Wang F.Li S.Wang Y.Zhan X.Wang F.Cheng R.Wang Z.He J., Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors, Front. Phys. 18(3), 33308 (2023)
11 Li L. , Wu M. . Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano, 2017, 11(6): 6382
https://doi.org/10.1021/acsnano.7b02756
12 Wu M. , Li J. . Sliding ferroelectricity in 2D van der Waals materials: Related physics and future opportunities. Proc. Natl. Acad. Sci. USA, 2021, 118(50): e2115703118
https://doi.org/10.1073/pnas.2115703118
13 Fei Z. , Zhao W. , A. Palomaki T. , Sun B. , K. Miller M. , Zhao Z. , Yan J. , Xu X. , H. Cobden D. . Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560(7718): 336
https://doi.org/10.1038/s41586-018-0336-3
14 Yang Q. , Wu M. , Li J. . Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett., 2018, 9(24): 7160
https://doi.org/10.1021/acs.jpclett.8b03654
15 Sharma P.X. Xiang F.F. Shao D.Zhang D.Y. Tsymbal E.R. Hamilton A.Seidel J., A room-temperature ferroelectric semimetal, Sci. Adv. 5(7), eaax5080 (2019)
16 Yasuda K. , Wang X. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. . Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372(6549): 1458
https://doi.org/10.1126/science.abd3230
17 V. Stern M. , Waschitz Y. , Cao W. , Nevo I. , Watanabe K. , Taniguchi T. , Sela E. , Urbakh M. , Hod O. , B. Shalom M. . Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372(6549): 1462
https://doi.org/10.1126/science.abe8177
18 R. Woods C. , Ares P. , Nevison-Andrews H. , J. Holwill M. , Fabregas R. , Guinea F. , K. Geim A. , S. Novoselov K. , R. Walet N. , Fumagalli L. . Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun., 2021, 12(1): 347
https://doi.org/10.1038/s41467-020-20667-2
19 Wang Y. , Jiang S. , Xiao J. , Cai X. , Zhang D. , Wang P. , Ma G. , Han Y. , Huang J. , Watanabe K. , Taniguchi T. , Guo Y. , Wang L. , S. Mayorov A. , Yu G. . Ferroelectricity in hBN intercalated double-layer graphene. Front. Phys., 2022, 17(4): 43504
https://doi.org/10.1007/s11467-022-1175-0
20 Hu H. , Wang H. , Sun Y. , Li J. , Wei J. , Xie D. , Zhu H. . Out-of-plane and in-plane ferroelectricity of atom-thick two-dimensional InSe. Nanotechnology, 2021, 32(38): 385202
https://doi.org/10.1088/1361-6528/ac0ac5
21 Sui F. , Jin M. , Zhang Y. , Qi R. , N. Wu Y. , Huang R. , Yue F. , Chu J. . Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor. Nat. Commun., 2023, 14(1): 36
https://doi.org/10.1038/s41467-022-35490-0
22 Rogée L. , Wang L. , Zhang Y. , Cai S. , Wang P. , Chhowalla M. , Ji W. , P. Lau S. . Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science, 2022, 376(6596): 973
https://doi.org/10.1126/science.abm5734
23 Wan Y. , Hu T. , Mao X. , Fu J. , Yuan K. , Song Y. , Gan X. , Xu X. , Xue M. , Cheng X. , Huang C. , Yang J. , Dai L. , Zeng H. , Kan E. . Room-temperature ferroelectricity in 1T′-ReS2 multilayers. Phys. Rev. Lett., 2022, 128(6): 067601
https://doi.org/10.1103/PhysRevLett.128.067601
24 P. Miao L. , Ding N. , Wang N. , Shi C. , Y. Ye H. , Li L. , F. Yao Y. , Dong S. , Zhang Y. . Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal. Nat. Mater., 2022, 21(10): 1158
https://doi.org/10.1038/s41563-022-01322-1
25 Jariwala B. , Voiry D. , Jindal A. , A. Chalke B. , Bapat R. , Thamizhavel A. , Chhowalla M. , Deshmukh M. , Bhattacharya A. . Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater., 2016, 28(10): 3352
https://doi.org/10.1021/acs.chemmater.6b00364
26 Ran J.Chen L.Wang D.Talebian-Kiakalaieh A.Jiao Y.Adel Hamza M.Qu Y.Jing L.Davey K.Z. Qiao S., Atomic‐level regulated two‐dimensional ReSe2: A universal platform boosting photocatalysis, Adv. Mater. 2023, 2210164 (2023)
27 Xing L. , Yan X. , Zheng J. , Xu G. , Lu Z. , Liu L. , Wang J. , Wang P. , Pan X. , Jiao L. . Highly crystalline ReSe2 atomic layers synthesized by chemical vapor transport. InfoMat, 2019, 1(4): 552
https://doi.org/10.1002/inf2.12041
28 S. Rosyadi A. , H. Y. Chan A. , X. Li J. , H. Liu C. , H. Ho C. . Formation of van der Waals stacked pn homojunction optoelectronic device of multilayered ReSe2 by Cr doping. Adv. Opt. Mater., 2022, 10(13): 2200392
https://doi.org/10.1002/adom.202200392
29 Hafeez M. , Gan L. , Li H. , Ma Y. , Zhai T. . Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater., 2016, 28(37): 8296
https://doi.org/10.1002/adma.201601977
30 Blake P. , W. Hill E. , H. Castro Neto A. , S. Novoselov K. , Jiang D. , Yang R. , J. Booth T. , K. Geim A. . Making graphene visible. Appl. Phys. Lett., 2007, 91(6): 063124
https://doi.org/10.1063/1.2768624
31 Li H. , Lu G. , Yin Z. , He Q. , Li H. , Zhang Q. , Zhang H. . Optical identification of single‐and few‐layer MoS2 sheets. Small, 2012, 8(5): 682
https://doi.org/10.1002/smll.201101958
32 Y. Wang Y. , D. Zhou J. , Jiang J. , T. Yin T. , X. Yin Z. , Liu Z. , X. Shen Z. . In-plane optical anisotropy in ReS2 flakes determined by angle-resolved polarized optical contrast spectroscopy. Nanoscale, 2019, 11(42): 20199
https://doi.org/10.1039/C9NR07502J
33 Kresse G.Hafner J., Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
34 Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
35 Kresse G. , Joubert D. . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
36 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
[1] fop-21304-OF-wanyi_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed