Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 63301   https://doi.org/10.1007/s11467-023-1308-0
  本期目录
Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing
Xiaobing Yan1(), Xu Han1, Ziliang Fang1, Zhen Zhao1, Zixuan Zhang1, Jiameng Sun1, Yiduo Shao1, Yinxing Zhang1, Lulu Wang1, Shiqing Sun1, Zhenqiang Guo1, Xiaotong Jia1, Yupeng Zhang1, Zhiyuan Guan1, Tuo Shi2()
1. Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
2. Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
 全文: PDF(7257 KB)   HTML
Abstract

Neuromorphic computing aims to achieve artificial intelligence by mimicking the mechanisms of biological neurons and synapses that make up the human brain. However, the possibility of using one reconfigurable memristor as both artificial neuron and synapse still requires intensive research in detail. In this work, Ag/SrTiO3(STO)/Pt memristor with low operating voltage is manufactured and reconfigurable as both neuron and synapse for neuromorphic computing chip. By modulating the compliance current, two types of resistance switching, volatile and nonvolatile, can be obtained in amorphous STO thin film. This is attributed to the manipulation of the Ag conductive filament. Furthermore, through regulating electrical pulses and designing bionic circuits, the neuronal functions of leaky integrate and fire, as well as synaptic biomimicry with spike-timing-dependent plasticity and paired-pulse facilitation neural regulation, are successfully realized. This study shows that the reconfigurable devices based on STO thin film are promising for the application of neuromorphic computing systems.

Key wordsAg/STO/Pt reconfigurable memristor    volatile and nonvolatile coexistence    neuron circuit    synaptic biomimicry    neuromorphic computing
收稿日期: 2022-12-14      出版日期: 2023-07-06
Corresponding Author(s): Xiaobing Yan,Tuo Shi   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 63301.
Xiaobing Yan, Xu Han, Ziliang Fang, Zhen Zhao, Zixuan Zhang, Jiameng Sun, Yiduo Shao, Yinxing Zhang, Lulu Wang, Shiqing Sun, Zhenqiang Guo, Xiaotong Jia, Yupeng Zhang, Zhiyuan Guan, Tuo Shi. Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing. Front. Phys. , 2023, 18(6): 63301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1308-0
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/63301
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Yan X.He H.Liu G.Zhao Z.Pei Y.Liu P.Zhao J.Zhou Z.Wang K.Yan H., A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3−CeO2 films on silicon, Adv. Mater. 34(23), 2110343 (2022)
2 Zhang X. , Zhuo Y. , Luo Q. , Wu Z. , Midya R. , Wang Z. , Song W. , Wang R. , K. Upadhyay N. , Fang Y. , Kiani F. , Rao M. , Yang Y. , Xia Q. , Liu Q. , Liu M. , J. Yang J. . An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun., 2020, 11(1): 51
https://doi.org/10.1038/s41467-019-13827-6
3 A. Merolla P.V. Arthur J.Alvarez-Icaza R.S. Cassidy A.Sawada J.Akopyan F.L. Jackson B.Imam N.Guo C.Nakamura Y.Brezzo B.Vo I.K. Esser S.Appuswamy R.Taba B.Amir A.D. Flickner M.P. Risk W.Manohar R.S. Modha D., A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345(6197), 668 (2014)
4 Yan X. , Li Y. , Zhao J. , Zhou Z. . Bistable capacitance performance-induced ambipolar charge injected based on Ba0.6Sr0.4TiO3 by an Inlaid Zr–Hf–O layer for novel nonvolatile memory application. IEEE Trans. Electron Dev., 2017, 64(2): 587
https://doi.org/10.1109/TED.2016.2637365
5 M. Nageswaran J.Dutt N.L. Krichmar J.Nicolau A.V. Veidenbaum A., A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors, Neural Netw. 22(5–6), 791 (2009)
6 Guo R. , Lin W. , Yan X. , Venkatesan T. , Chen J. . Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev., 2020, 7(1): 011304
https://doi.org/10.1063/1.5120565
7 Ling H. , A. Koutsouras D. , Kazemzadeh S. , Van De Burgt Y. , Yan F. , Gkoupidenis P. . Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev., 2020, 7(1): 011307
https://doi.org/10.1063/1.5122249
8 Zhang Y. , Wang Z. , Zhu J. , Yang Y. , Rao M. , Song W. , Zhuo Y. , Zhang X. , Cui M. , Shen L. , Huang R. , Joshua Yang J. . Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Appl. Phys. Rev., 2020, 7(1): 011308
https://doi.org/10.1063/1.5124027
9 Zhou Z. , Yang F. , Wang S. , Wang L. , Wang X. , Wang C. , Xie Y. , Liu Q. . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
https://doi.org/10.1007/s11467-021-1114-5
10 T. Zhang H. , J. Park T. , Islam A. , S. J. Tran D. , Manna S. , Wang Q. , Mondal S. , Yu H. , Banik S. , Cheng S. , Zhou H. , Gamage S. , Mahapatra S. , Zhu Y. , Abate Y. , Jiang N. , Sankaranarayanan S. , Sengupta A. , Teuscher C. , Ramanathan S. . Reconfigurable perovskite nickelate electronics for artificial intelligence. Science, 2022, 375(6580): 533
https://doi.org/10.1126/science.abj7943
11 M. Huang H. , Yang R. , H. Tan Z. , K. He H. , Zhou W. , Xiong J. , Guo X. . Quasi‐hodgkin–huxley neurons with leaky integrate‐and‐fire functions physically realized with memristive devices. Adv. Mater., 2019, 31(3): 1803849
https://doi.org/10.1002/adma.201803849
12 H. Sung S. , J. Kim T. , Shin H. , H. Im T. , J. Lee K. . Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun., 2022, 13: 2811
https://doi.org/10.1038/s41467-022-30432-2
13 Ilyas N. , Wang J. , Li C. , Fu H. , Li D. , Jiang X. , Gu D. , Jiang Y. , Li W. . Controllable resistive switching of STO: Ag/SiO2-based memristor synapse for neuromorphic computing. J. Mater. Sci. Technol., 2022, 97: 254
https://doi.org/10.1016/j.jmst.2021.04.071
14 Tuma T. , Pantazi A. , Le Gallo M. , Sebastian A. , Eleftheriou E. . Stochastic phase-change neurons. Nat. Nanotechnol., 2016, 11(8): 693
https://doi.org/10.1038/nnano.2016.70
15 Yan X. , Zhao J. , Liu S. , Zhou Z. , Liu Q. , Chen J. , Y. Liu X. . Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater., 2018, 28(1): 1705320
https://doi.org/10.1002/adfm.201705320
16 Sun X. , Li G. , Zhang X. , Ding L. , Zhang W. . Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells. J. Phys. D Appl. Phys., 2011, 44(12): 125404
https://doi.org/10.1088/0022-3727/44/12/125404
17 Ji J. , Ling F. , Zhou S. , Li D. , Luo C. , Wu L. , Yao J. . Optically tuned dielectric property of ferroelectric PZT/STO/PT superlattice by THz spectroscopy. J. Alloys Compd., 2017, 703: 517
https://doi.org/10.1016/j.jallcom.2017.01.334
18 Jong Choi H. , Won Park S. , Deok Han G. , Na J. , T. Kim G. , Hyung Shim J. . Resistive switching characteristics of polycrystalline SrTiO3 films. Appl. Phys. Lett., 2014, 104(24): 242105
https://doi.org/10.1063/1.4883646
19 Yan X. , Yin J. , Liu Z. , Xia X. . Studies on the reset power needed for the unipolar resistive switching in amorphous SrTiO3−δ films induced by electrical pulse. Phys. Lett. A, 2011, 375(41): 3599
https://doi.org/10.1016/j.physleta.2011.07.031
20 Hou P. , Gao Z. , Ni K. . Multilevel data storage memory based on polycrystalline SrTiO3 ultrathin film. RSC Advances, 2017, 7(78): 49753
https://doi.org/10.1039/C7RA09806E
21 Hu H. , Li Y. , Yang Y. , Lv W. , Yu H. , Lu W. , Dong Y. , Wen Z. . Enhanced resistance switching in ultrathin Ag/SrTiO3/(La, Sr)MnO3 memristors and their long-term plasticity for neuromorphic computing. Appl. Phys. Lett., 2021, 119(2): 023502
https://doi.org/10.1063/5.0053107
22 Xiong J. , Yang R. , Shaibo J. , M. Huang H. , K. He H. , Zhou W. , Guo X. . Cooper, and Munro learning rules realized in second‐order memristors with tunable forgetting rate. Adv. Funct. Mater., 2019, 29(9): 1807316
https://doi.org/10.1002/adfm.201807316
23 A. Rahman M. , Walia S. , Naznee S. , Taha M. , Nirantar S. , Rahman F. , Bhaskaran M. , Sriram S. . Artificial somatosensors: Feedback receptors for electronic skins. Adv. Intell. Syst., 2020, 2(11): 2000094
https://doi.org/10.1002/aisy.202000094
24 Tang H. , G. Tang X. , P. Jiang Y. , X. Liu Q. , H. Li W. , Luo L. . Bipolar resistive switching characteristics of amorphous SrTiO3 thin films prepared by the sol−gel process. J Asian Ceram Soc., 2019, 7(3): 298
https://doi.org/10.1080/21870764.2019.1625499
25 Wang K. , Hu Q. , Gao B. , Lin Q. , W. Zhuge F. , Y. Zhang D. , Wang L. , H. He Y. , H. Scheicher R. , Tong H. , S. Miao X. . Threshold switching memristor-based stochastic neurons for probabilistic computing. Mater. Horiz., 2021, 8(2): 619
https://doi.org/10.1039/D0MH01759K
26 Wang K.Li L.Zhao R.Zhao J.Zhou Z.Wang J.Wang H.Tang B.Lu C.Lou J.Chen J.Yan X., A pure 2H‐MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator, Adv. Electron. Mater. 6(3), 1901342 (2020)
27 Wang G. , Yan X. , Chen J. , Ren D. . Memristors based on the hybrid structure of oxide and boron nitride nanosheets combining memristive and neuromorphic functionalities. Phys. Status Solidi Rapid Res. Lett., 2020, 14(1): 1900539
https://doi.org/10.1002/pssr.201900539
28 Wu F. , Si S. , Cao P. , Wei W. , Zhao X. , Shi T. , Zhang X. , Ma J. , Cao R. , Liao L. , Y. Tseng T. , Liu Q. . Interface engineering via MoS2 insertion layer for improving resistive switching of conductive-bridging random access memory. Adv. Electron. Mater., 2019, 5(4): 1800747
https://doi.org/10.1002/aelm.201800747
29 A. Liu L.Zhao J.Cao G.Zheng S.Yan X., A memristor-based silicon carbide for artificial nociceptor and neuromorphic computing, Adv. Electron. Mater. 6, 2100373 (2021)
30 Mou X. , Tang J. , Lyu Y. , Zhang Q. , Yang S. , Xu F. , Liu W. , Xu M. , Zhou Y. , Sun W. , Zhong Y. , Gao B. , Yu P. , Qian H. , Wu H. . Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning. Sci. Adv., 2021, 7(29): eabh0648
https://doi.org/10.1126/sciadv.abh0648
31 Zhang Y. , He W. , Wu Y. , Huang K. , Shen Y. , Su J. , Wang Y. , Zhang Z. , Ji X. , Li G. , Zhang H. , Song S. , Li H. , Sun L. , Zhao R. , Shi L. . Highly compact artificial memristive neuron with low energy consumption. Small, 2018, 14(51): 1802188
https://doi.org/10.1002/smll.201802188
32 Zhang Y. , Fang Z. , Yan X. . HfO2-based memristor-CMOS hybrid implementation of artificial neuron model. Appl. Phys. Lett., 2022, 120(21): 213502
https://doi.org/10.1063/5.0091286
33 Yan L. , Pei Y. , Wang J. , He H. , Zhao Y. , Li X. , Wei Y. , Yan X. . High-speed Si films based threshold switching device and its artificial neuron application. Appl. Phys. Lett., 2021, 119(15): 153507
https://doi.org/10.1063/5.0063078
34 Wang Y. , Chen X. , Shen D. , Zhang M. , Chen X. , Chen X. , Shao W. , Gu H. , Xu J. , Hu E. , Wang L. , Xu R. , Tong Y. . Artificial neurons based on Ag/V2C/W threshold switching memristors. Nanomaterials (Basel), 2021, 11(11): 2860
https://doi.org/10.3390/nano11112860
35 Dayan P.F. Abbott L., Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press, 2005
36 Yang R. , M. Huang H. , H. Hong Q. , B. Yin X. , H. Tan Z. , Shi T. , X. Zhou Y. , S. Miao X. , P. Wang X. , B. Mi S. , L. Jia C. , Guo X. . Synaptic suppression triplet-STDP learning rule realized in second-order memristors. Adv. Funct. Mater., 2018, 28(5): 1704455
https://doi.org/10.1002/adfm.201704455
37 He Y. , Nie S. , Liu R. , Jiang S. , Shi Y. , Wan Q. . Spatiotemporal information processing emulated by multiterminal neuro‐transistor networks. Adv. Mater., 2019, 31(21): 1900903
https://doi.org/10.1002/adma.201900903
38 Zhang X. , Wang W. , Liu Q. , Zhao X. , Wei J. , Cao R. , Yao Z. , Zhu X. , Zhang F. , Lv H. . An artificial neuron based on a threshold switching memristor. IEEE Electr. Device L., 2017, 39(2): 308
https://doi.org/10.1109/LED.2017.2782752
39 Cao G. , Yan X. , Wang J. , Zhou Z. , Lou J. , Wang K. . Realization of fast switching speed and electronic synapse in Ta/TaOx/AlN/Pt bipolar resistive memory. AIP Adv., 2020, 10(5): 055312
https://doi.org/10.1063/5.0007393
40 Yan X.Wang K.Zhao J.Zhou Z.Wang H.Wang J.Zhang L.Li X.Xiao Z.Zhao Q.Pei Y.Wang G.Qin C.Li H.Lou J.Liu Q.Zhou P., A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio‐synapse, Small 15(25), 1900107 (2019)
41 Zhao Z. , Abdelsamie A. , Guo R. , Shi S. , Zhao J. , Lin W. , Sun K. , Wang J. , Wang J. , Yan X. , Chen J. . Flexible artificial synapse based on single-crystalline BiFeO3 thin film. Nano Res., 2022, 15(3): 2682
https://doi.org/10.1007/s12274-021-3782-4
42 Shi T.Wang R.Wu Z.Sun Y.An J.Liu Q., A review of resistive switching devices: Performance improvement, characterization, and applications, Small Struct. 2(4), 2000109 (2021)
43 Pei Y.Zhou Z.P. Chen A.Chen J.Yan X., A carbon-based memristor design for associative learning activities and neuromorphic computing, Nanoscale 12(25), 13531 (2020)
44 F. Wang Y. , C. Lin Y. , T. Wang I. , P. Lin T. , H. Hou T. . Characterization and modeling of nonfilamentary Ta/TaOx/TiO2/Ti analog synaptic device. Sci. Rep., 2015, 5(1): 10150
https://doi.org/10.1038/srep10150
45 Zhao Z. , Yan X. . Ferroelectric memristor based on Hf0.5Zr0.5O2 thin film combining memristive and neuromorphic functionalities. Phys. Status Solidi Rapid Res. Lett., 2020, 14(9): 2000224
https://doi.org/10.1002/pssr.202000224
46 Zhu Z.Pei Y.Gao C.Wang H.Yan X., A Cu/HZO/GeS/Pt memristor for neuroinspired computing, Phys. Status Solidi Rapid Res. Lett. 15(10), 2100072 (2021)
47 Ke S. , Jiang L. , Zhao Y. , Xiao Y. , Jiang B. , Cheng G. , Wu F. , Cao G. , Peng Z. , Zhu M. , Ye C. . Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508
https://doi.org/10.1007/s11467-022-1173-2
[1] fop-21308-OF-hanxu_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed