Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 63603   https://doi.org/10.1007/s11467-023-1310-6
  本期目录
HfAlO-based ferroelectric memristors for artificial synaptic plasticity
Jie Yang1,2, Zixuan Jian1, Zhongrong Wang1, Jianhui Zhao1, Zhenyu Zhou1, Yong Sun1, Mengmeng Hao1, Linxia Wang1, Pan Liu1, Jingjuan Wang1, Yifei Pei1, Zhen Zhao1, Wei Wang1, Xiaobing Yan1,3()
1. Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
2. Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
3. Department of Materials Science and Engineering National University of Singapore, Singapore 117576, Singapore
 全文: PDF(5995 KB)   HTML
Abstract

Memristors have received much attention for their ability to achieve multi-level storage and synaptic learning. However, the main factor that hinders the application of memristors to simulate neural synapses is the instability of the formation and breakage of conductive filaments inside traditional memristors, which makes it difficult to simulate the function of biological synapses in practice. However, the resistance change of ferroelectric memristors relies on the polarization inversion of the ferroelectric thin film, thus avoiding the above problem. In this study, a Pd/HfAlO/LSMO/STO/Si ferroelectric memristor is proposed, which can achieve resistive switching properties through the combined action of ferroelectricity and oxygen vacancies. The I−V curves show that the device has good stability and uniformity. In addition, the effect of pulse sequence modulation on the conductance was investigated, and the biological synaptic function and learning behavior were simulated successfully. The results of the above studies provide a basis for the development of ferroelectric memristors with neurosynaptic-like behaviors.

Key wordsmemristor    ferroelectric domain polarization    resistance regulation    artificial synapse
收稿日期: 2023-03-16      出版日期: 2023-09-19
Corresponding Author(s): Xiaobing Yan   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 63603.
Jie Yang, Zixuan Jian, Zhongrong Wang, Jianhui Zhao, Zhenyu Zhou, Yong Sun, Mengmeng Hao, Linxia Wang, Pan Liu, Jingjuan Wang, Yifei Pei, Zhen Zhao, Wei Wang, Xiaobing Yan. HfAlO-based ferroelectric memristors for artificial synaptic plasticity. Front. Phys. , 2023, 18(6): 63603.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1310-6
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/63603
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Zhang C. , Chen Y. , Yi M. , Zhu Y. , Li T. , Liu L. , Wang L. , Xie L. , Huang W. . Recent progress in memristors for stimulating synaptic plasticity. Scientia Sinica Informationis, 2018, 48(2): 115
https://doi.org/10.1360/N112017-00022
2 Nicholas J.Akshay Krishna R.Abhronil S.John S.Vijaykrishnan N., 2019 IEEE International Symposium on Circuits and Systems (IEEE ISCAS), pp 1–5 (2019)
3 B. Furber S. , R. Lester D. , A. Plana L. , D. Garside J. , Painkras E. , Temple S. , D. Brown A. . Overview of the spinnaker system architecture. IEEE Trans. Comput., 2012, 62(12): 2454
https://doi.org/10.1109/tc.2012.142
4 Sun K. , Chen J. , Yan X. . The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater., 2021, 31(8): 2006773
https://doi.org/10.1002/adfm.202006773
5 Kim H.P. Sah M.Yang C.O. Chua L., 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010), pp 1–6 (2010)
6 Niu D.Chen Y.Xie Y., Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design, pp 25–30 (2010)
7 Pisarev A.Busygin A.Udovichenko S.Maevsky O., 3D memory matrix based on a composite memristor-diode crossbar for a neuromorphic processor, Microelectron. Eng. 198, 1 (2018)
8 Sokolov A. , Ali M. , Li H. , R. Jeon Y. , J. Ko M. , Choi C. . Partially oxidized MXene Ti3C2Tx sheets for memristor having synapse and threshold resistive switching characteristics. Adv. Electron. Mater., 2021, 7(2): 2000866
https://doi.org/10.1002/aelm.202000866
9 Yu T. , He F. , Zhao J. , Zhou Z. , Chang J. , Chen J. , Yan X. . Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Sci. China Mater., 2021, 64(3): 727
https://doi.org/10.1007/s40843-020-1444-1
10 Mikheev V. , Chouprik A. , Lebedinskii Y. , Zarubin S. , M. Markeev A. , V. Zenkevich A. , Negrov D. . Memristor with a ferroelectric HfO2 layer: In which case it is a ferroelectric tunnel junction. Nanotechnology, 2020, 31(21): 215205
https://doi.org/10.1088/1361-6528/ab746d
11 Humood K. , Saylan S. , Abi Jaoude M. , Mohammad B. , Ravaux F. . Impact of vacuum on the resistive switching in HfO2-based conductive-bridge RAM with highly-doped silicon bottom electrode. Mater. Sci. Eng. B, 2021, 271: 115267
https://doi.org/10.1016/j.mseb.2021.115267
12 Chakrabartty S. , Acharjee S. , Al-Shidaifat A. , Biswas M. , Song H. . Gd-doped HfO2 memristor device, evaluation robustness by image noise cancellation and edge detection filter for neuromorphic computing. IEEE Access, 2019, 7: 157922
https://doi.org/10.1109/ACCESS.2019.2950080
13 Wang Y. , Niu G. , Wang Q. , Roy S. , Dai L. , Wu H. , Sun Y. , Song S. , Song Z. , Xie Y. , Ye Z. , Meng X. , Ren W. . Reliable resistive switching of epitaxial single crystalline cubic Y-HfO2 RRAMs with Si as bottom electrodes. Nanotechnology, 2020, 31(20): 205203
https://doi.org/10.1088/1361-6528/ab72b6
14 Kohlstedt H. , A. Pertsev N. , R. Contreras J. , Waser R. . Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B, 2005, 72(12): 125341
https://doi.org/10.1103/PhysRevB.72.125341
15 Guo R. , Wang Z. , Zeng S. , Han K. , Huang L. , G. Schlom D. , Venkatesan T. , Chen Ariando . Functional ferroelectric tunnel junctions on silicon. Sci. Rep., 2015, 5(1): 12576
https://doi.org/10.1038/srep12576
16 Choi J. , Kim S. . Nonlinear characteristics of complementary resistive switching in HfAlOx-based memristor for high-density cross-point array structure. Coatings, 2020, 10(8): 765
https://doi.org/10.3390/coatings10080765
17 Y. Wang T. , L. Meng J. , Y. Rao M. , Y. He Z. , Chen L. , Zhu H. , Q. Sun Q. , J. Ding S. , Z. Bao W. , Zhou P. , W. Zhang D. . Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett., 2020, 20(6): 4111
https://doi.org/10.1021/acs.nanolett.9b05271
18 Mahata C. , Ismail M. , Kim S. . Conductance quantization control and neuromorphic properties in Pt-nanoparticle incorporated HfAlOx alloy memristor. Appl. Phys. Lett., 2021, 119(22): 221601
https://doi.org/10.1063/5.0068090
19 Miao T. , Yu D. , Xing L. , Li D. , Jiao L. , Ma W. , Zhang X. . Current rectification in a structure: ReSe2/Au contacts on both sides of ReSe2. Nanoscale Res. Lett., 2019, 14(1): 1
https://doi.org/10.1186/s11671-018-2843-4
20 Covi E. , Brivio S. , Fanciulli M. , Spiga S. . Synaptic potentiation and depression in Al: HfO2-based memristor. Microelectron. Eng., 2015, 147: 41
https://doi.org/10.1016/j.mee.2015.04.052
21 Xu Z. , Yu L. , Wu Y. , Dong C. , Deng N. , Xu X. , Miao J. , Jiang Y. . Low-energy resistive random access memory devices with no need for a compliance current. Sci. Rep., 2015, 5: 10409
https://doi.org/10.1038/srep10409
22 Boschker H. , Huijben M. , Vailionis A. , Verbeeck J. , van Aert S. , Luysberg M. , Bals S. , van Tendeloo G. , P. Houwman E. , Koster G. , H. A. Blank D. , Rijnders G. . Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics. J. Phys. D Appl. Phys., 2011, 44(20): 205001
https://doi.org/10.1088/0022-3727/44/20/205001
23 H. Chang J. , G. Zheng C. , H. Chen H. , T. Chen P. , B. Liu C. , Y. Huang K. , H. Hsu H. , H. Cheng C. , C. Chou W. , T. Han S. . Effect of capping layer on the ferroelectricity of hafnium oxide. Thin Solid Films, 2022, 753: 139274
https://doi.org/10.1016/j.tsf.2022.139274
24 M. Yau H. , Chen X. , M. Wong C. , Chen D. , Dai J. . Orientation control of phase transition and ferroelectricity in Al-doped HfO2 thin films. Mater. Charact., 2021, 176: 111114
https://doi.org/10.1016/j.matchar.2021.111114
25 O. Filatova E. , A. Sokolov A. , V. Kozhevnikov I. , Y. Taracheva E. , S. Grunsky O. , Schaefers F. , Braun W. . Investigation of the structure of thin HfO2 films by soft X-ray reflectometry techniques. J. Phys.: Condens. Matter, 2009, 21(18): 185012
https://doi.org/10.1088/0953-8984/21/18/185012
26 Fan Z. , X. Xiao J. , X. Wang J. , Zhang L. , Y. Deng J. , Y. Liu Z. , L. Dong Z. , Wang J. , S. Chen J. . Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films. Appl. Phys. Lett., 2016, 108(23): 232905
https://doi.org/10.1063/1.4953461
27 Li Y. , Long S. , Liu Q. , Lü H. , Liu S. , Liu M. . An overview of resistive random access memory devices. Chin. Sci. Bull., 2011, 56(28−29): 3072
https://doi.org/10.1007/s11434-011-4671-0
28 Yin L. , Cheng R. , Wang Z. , Wang F. , G. Sendeku M. , Wen Y. , Zhan X. , He J. . Two-dimensional unipolar memristors with logic and memory functions. Nano Lett., 2020, 20(6): 4144
https://doi.org/10.1021/acs.nanolett.0c00002
29 Yin L. , Q. Cheng R. , Wen Y. , S. Liu C. , He J. . Emerging 2D memory devices for in‐memory computing. Adv. Mater., 2021, 33(29): 2007081
https://doi.org/10.1002/adma.202007081
30 Y. Lee H.S. Chen P.Y. Wu T.S. Chen Y.C. Wang C.J. Tzeng P.H. Lin C.Chen F.H. Lien C.J. Tsai M., 2008 IEEE International Electron Devices Meeting, pp 1–4 (2008)
31 Yu S. , Guan X. , S. P. Wong H. . Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model. Appl. Phys. Lett., 2011, 99(6): 063507
https://doi.org/10.1063/1.3624472
32 Cagli C. , Nardi F. , Ielmini D. . Modeling of set/reset operations in NiO-based resistive-switching memory devices. IEEE Trans. Electron Dev., 2009, 56(8): 1712
https://doi.org/10.1109/TED.2009.2024046
33 K. Cheng W. , Wang F. , M. Han Y. , C. Zhang Z. , S. Zhao J. , L. Zhang K. . HfO2-based resistive switching memory with CNTs electrode for high density storage. Solid-State Electron., 2017, 132: 19
https://doi.org/10.1016/j.sse.2017.03.004
34 Yan X. , Wang J. , Zhao M. , Li X. , Wang H. , Zhang L. , Lu C. , Ren D. . Artificial electronic synapse characteristics of a Ta/Ta2O5−x/Al2O3/InGaZnO4 memristor device on flexible stainless steel substrate. Appl. Phys. Lett., 2018, 113(1): 013503
https://doi.org/10.1063/1.5027776
35 Algadi H. , Mahata C. , Alsuwian T. , Ismail M. , Kwon D. , Kim S. . Gradual resistive switching and synaptic properties of ITO/HfAlO/ITO device embedded with Pt nanoparticles. Mater. Lett., 2021, 298: 130011
https://doi.org/10.1016/j.matlet.2021.130011
36 H. Kim S. , Kwon O. , Ryu H. , J. Kim S. . Improved synaptic device properties of HfAlOx dielectric on highly doped silicon substrate by partial reset process. Metals (Basel), 2021, 11(5): 772
https://doi.org/10.3390/met11050772
37 W. Kao R. , K. Peng H. , Y. Chen K. , H. Wu Y. . HfZrOx-based switchable diode for logic-in-memory applications. IEEE Trans. Electron Dev., 2021, 68(2): 545
https://doi.org/10.1109/TED.2020.3046541
38 Wu Z. , Zhu J. . Enhanced unipolar resistive switching characteristics of Hf0.5Zr0.5O2 thin films with high ON/OFF ratio. Materials (Basel), 2017, 10(3): 322
https://doi.org/10.3390/ma10030322
39 Li M. , Zhou J. , Jing X. , Zeng M. , Wu S. , Gao J. , Zhang Z. , Gao X. , Lu X. , M. Liu J. , Alexe M. . Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies. Adv. Electron. Mater., 2015, 1(6): 1500069
https://doi.org/10.1002/aelm.201500069
40 V. Zhirnov V. , K. Cavin R. . Charge of the heavy brigade. Nat. Nanotechnol., 2008, 3(7): 377
https://doi.org/10.1038/nnano.2008.197
41 T. Yi H. , Choi T. , G. Choi S. , S. Oh Y. , W. Cheong S. . Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater., 2011, 23(30): 3403
https://doi.org/10.1002/adma.201100805
[1] fop-21310-OF-yangjie_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed