Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2023, Vol. 18 Issue (6): 61301   https://doi.org/10.1007/s11467-023-1311-5
  本期目录
Preparing quantum states by measurement-feedback control with Bayesian optimization
Yadong Wu1,2,3,4, Juan Yao5,6,7, Pengfei Zhang1,8()
1. Department of Physics, Fudan University, Shanghai 200438, China
2. State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
3. Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
4. Shanghai Qi Zhi Institute, AI Tower, Xuhui District, Shanghai 200232, China
5. Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
6. International Quantum Academy, Shenzhen 518048, China
7. Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
8. Walter Burke Institute for Theoretical Physics & Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA
 全文: PDF(3556 KB)   HTML
Abstract

The preparation of quantum states is crucial for enabling quantum computations and simulations. In this work, we present a general framework for preparing ground states of many-body systems by combining the measurement-feedback control process (MFCP) with machine learning techniques. Specifically, we employ Bayesian optimization (BO) to enhance the efficiency of determining the measurement and feedback operators within the MFCP. As an illustration, we study the ground state preparation of the one-dimensional Bose−Hubbard model. Through BO, we are able to identify optimal parameters that can effectively drive the system towards low-energy states with a high probability across various quantum trajectories. Our results open up new directions for further exploration and development of advanced control strategies for quantum computations and simulations.

Key wordsstate preparation    feedback control    Bayesian optimization
收稿日期: 2023-04-14      出版日期: 2023-06-30
Corresponding Author(s): Pengfei Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2023, 18(6): 61301.
Yadong Wu, Juan Yao, Pengfei Zhang. Preparing quantum states by measurement-feedback control with Bayesian optimization. Front. Phys. , 2023, 18(6): 61301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1311-5
https://academic.hep.com.cn/fop/CN/Y2023/V18/I6/61301
Fig.1  
Fig.2  
Fig.3  
1 M. Geremia J. , K. Stockton J. , Mabuchi H. . Real-time quantum feedback control of atomic spin-squeezing. Science, 2004, 304(5668): 270
https://doi.org/10.1126/science.1095374
2 M. Geremia J. . Deterministic and nondestructively verifiable preparation of photon number states. Phys. Rev. Lett., 2006, 97(7): 073601
https://doi.org/10.1103/PhysRevLett.97.073601
3 Yanagisawa M. . Quantum feedback control for deterministic entangled photon generation. Phys. Rev. Lett., 2006, 97(19): 190201
https://doi.org/10.1103/PhysRevLett.97.190201
4 Negretti A. , V. Poulsen U. , Mølmer K. . Quantum superposition state production by continuous observations and feedback. Phys. Rev. Lett., 2007, 99(22): 223601
https://doi.org/10.1103/PhysRevLett.99.223601
5 Sayrin C. , Dotsenko I. , Zhou X. , Peaudecerf B. , Rybarczyk T. , Gleyzes S. , Rouchon P. , Mirrahimi M. , Amini H. , Brune M. , M. Raimond J. , Haroche S. . Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477(7362): 73
https://doi.org/10.1038/nature10376
6 Zhou X. , Dotsenko I. , Peaudecerf B. , Rybarczyk T. , Sayrin C. , Gleyzes S. , M. Raimond J. , Brune M. , Haroche S. . Field locked to a Fock state by quantum feedback with single photon corrections. Phys. Rev. Lett., 2012, 108(24): 243602
https://doi.org/10.1103/PhysRevLett.108.243602
7 Ristè D. , Dukalski M. , A. Watson C. , de Lange G. , J. Tiggelman M. , M. Blanter Ya. , W. Lehnert K. , N. Schouten R. , DiCarlo L. . Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature, 2013, 502(7471): 350
https://doi.org/10.1038/nature12513
8 Inoue R. , I. R. Tanaka S. , Namiki R. , Sagawa T. , Takahashi Y. . Unconditional quantumnoise suppression via measurement-based quantum feedback. Phys. Rev. Lett., 2013, 110(16): 163602
https://doi.org/10.1103/PhysRevLett.110.163602
9 C. J. Wade A. , F. Sherson J. , Mølmer K. . Squeezing and entanglement of density oscillations in a Bose-Einstein condensate. Phys. Rev. Lett., 2015, 115(6): 060401
https://doi.org/10.1103/PhysRevLett.115.060401
10 C. Cox K. , P. Greve G. , M. Weiner J. , K. Thompson J. . Deterministic squeezed states with collective measurements and feedback. Phys. Rev. Lett., 2016, 116(9): 093602
https://doi.org/10.1103/PhysRevLett.116.093602
11 Gajdacz M. , J. Hilliard A. , A. Kristensen M. , L. Pedersen P. , Klempt C. , J. Arlt J. , F. Sherson J. . Preparation of ultracold atom clouds at the shot noise level. Phys. Rev. Lett., 2016, 117(7): 073604
https://doi.org/10.1103/PhysRevLett.117.073604
12 Lammers J. , Weimer H. , Hammerer K. . Open-system many-body dynamics through interferometric measurements and feedback. Phys. Rev. A, 2016, 94(5): 052120
https://doi.org/10.1103/PhysRevA.94.052120
13 Sudhir V. , J. Wilson D. , Schilling R. , Schütz H. , A. Fedorov S. , H. Ghadimi A. , Nunnenkamp A. , J. Kippenberg T. . Appearance and disappearance of quantum correlations in measurement-based feedback control of a mechanical oscillator. Phys. Rev. X, 2017, 7(1): 011001
https://doi.org/10.1103/PhysRevX.7.011001
14 J. Briegel H. , Raussendorf R. . Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 2001, 86(5): 910
https://doi.org/10.1103/PhysRevLett.86.910
15 Raussendorf R. , Bravyi S. , Harrington J. . Long-range quantum entanglement in noisy cluster states. Phys. Rev. A, 2005, 71(6): 062313
https://doi.org/10.1103/PhysRevA.71.062313
16 Verresen R.Tantivasadakarn N.Vishwanath A., Efficiently preparing Schrödinger’s cat, fractons and non-Abelian topological order in quantum devices, arXiv: 2112.03061 (2021)
17 Tantivasadakarn N.Thorngren R.Vishwanath A.Verresen R., Long-range entanglement from measuring symmetry-protected topological phases, arXiv: 2112.01519 (2021)
18 Y. Zhu G.Tantivasadakarn N.Vishwanath A.Trebst S.Verresen R., Nishimori’s cat: Stable long-range entanglement from finite-depth unitaries and weak measurements, arXiv: 2208.11136 (2022)
19 Y. Lee J.Ji W.Bi Z.Fisher M., Measurement-prepared quantum criticality: From Ising model to gauge theory, and beyond, arXiv: 2208.11699 (2022)
20 Tantivasadakarn N.Vishwanath A.Verresen R., A hierarchy of topological order from finite depth unitaries, measurement and feedforward, arXiv: 2209.06202 (2022)
21 Bravyi S.Kim I.Kliesch A.Koenig R., Adaptive constant-depth circuits for manipulating non-Abelian anyons, arXiv: 2205.01933 (2022)
22 C. Lu T.A. Lessa L.H. Kim I.H. Hsieh T., Measurement as a shortcut to long-range entangled quantum matter, arXiv: 2206.13527 (2022)
23 Wu S.Cai Z., Feedback-induced interactive dynamics: Unitary but dissipative evolution, arxiv: 2211.09291 (2022)
24 M. Wiseman H. . Quantum theory of continuous feedback. Phys. Rev. A, 1994, 49(3): 2133
https://doi.org/10.1103/PhysRevA.49.2133
25 Zhang J. , Liu Y. , B. Wu R. , Jacobs K. , Nori F. . Quantum feedback: Theory, experiments, and applications. Phys. Rep., 2017, 679: 1
https://doi.org/10.1016/j.physrep.2017.02.003
26 K. Thomsen L. , Mancini S. , M. Wiseman H. . Spin squeezing via quantum feedback. Phys. Rev. A, 2002, 65(6): 061801
https://doi.org/10.1103/PhysRevA.65.061801
27 A. Muschik C. , Hammerer K. , S. Polzik E. , J. Cirac I. . Quantum teleportation of dynamics and effective interactions between remote systems. Phys. Rev. Lett., 2013, 111(2): 020501
https://doi.org/10.1103/PhysRevLett.111.020501
28 L. Grimsmo A. , S. Parkins A. , S. Skagerstam B. . Rapid steady-state convergence for quantum systems using time-delayed feedback control. New J. Phys., 2014, 16(6): 065004
https://doi.org/10.1088/1367-2630/16/6/065004
29 C. Emary, E. Schöll , T. Brandes. W. Kopylov . Time-delayed feedback control of the Dicke–Hepp–Lieb superradiant quantum phase transition. New J. Phys., 2015, 17(1): 013040
https://doi.org/10.1088/1367-2630/17/1/013040
30 Mazzucchi G. , F. Caballero-Benitez S. , A. Ivanov D. , B. Mekhov I. . Quantum optical feedback control for creating strong correlations in many-body systems. Optica, 2016, 3(11): 1213
https://doi.org/10.1364/OPTICA.3.001213
31 Shankar A. , P. Greve G. , Wu B. , K. Thompson J. , Holland M. . Continuous real-time tracking of a quantum phase below the standard quantum limit. Phys. Rev. Lett., 2019, 122(23): 233602
https://doi.org/10.1103/PhysRevLett.122.233602
32 A. Ivanov D. , Y. Ivanova T. , F. Caballero-Benitez S. , B. Mekhov I. . Cavityless self-organization of ultracold atoms due to the feedback-induced phase transition. Sci. Rep., 2020, 10(1): 10550
https://doi.org/10.1038/s41598-020-67280-3
33 A. Ivanov D. , Yu. Ivanova T. , F. Caballero-Benitez S. , B. Mekhov I. . Feedback-induced quantum phase transitions using weak measurements. Phys. Rev. Lett., 2020, 124(1): 010603
https://doi.org/10.1103/PhysRevLett.124.010603
34 Kroeger K. , Dogra N. , Rosa-Medina R. , Paluch M. , Ferri F. , Donner T. , Esslinger T. . Continuous feedback on a quantum gas coupled to an optical cavity. New J. Phys., 2020, 22(3): 033020
https://doi.org/10.1088/1367-2630/ab73cc
35 H. Muñoz-Arias M. , M. Poggi P. , S. Jessen P. , H. Deutsch I. . Simulating nonlinear dynamics of collective spins via quantum measurement and feedback. Phys. Rev. Lett., 2020, 124(11): 110503
https://doi.org/10.1103/PhysRevLett.124.110503
36 H. Muñoz-Arias M. , H. Deutsch I. , S. Jessen P. , M. Poggi P. . Simulation of the complex dynamics of mean-field p-spin models using measurement-based quantum feedback control. Phys. Rev. A, 2020, 102(2): 022610
https://doi.org/10.1103/PhysRevA.102.022610
37 M. Hurst H. , Guo S. , B. Spielman I. . Feedback induced magnetic phases in binary Bose-Einstein condensates. Phys. Rev. Res., 2020, 2(4): 043325
https://doi.org/10.1103/PhysRevResearch.2.043325
38 A. Ivanov D. , Yu. Ivanova T. , F. Caballero-Benitez S. , B. Mekhov I. . Tuning the universality class of phase transitions by feedback: Open quantum systems beyond dissipation. Phys. Rev. A, 2021, 104(3): 033719
https://doi.org/10.1103/PhysRevA.104.033719
39 M. Hurst H. , B. Spielman I. . Measurement-induced dynamics and stabilization of spinor-condensate domain walls. Phys. Rev. A, 2019, 99(5): 053612
https://doi.org/10.1103/PhysRevA.99.053612
40 T. Young J. , V. Gorshkov A. , B. Spielman I. . Feedback-stabilized dynamical steady states in the bosehubbard model. Phys. Rev. Res., 2021, 3(4): 043075
https://doi.org/10.1103/PhysRevResearch.3.043075
41 M. Wiseman H.J. Milburn G., Quantum Measurement and Control, Cambridge University Press, 2009
42 Shen H. , Liu J. , Fu L. . Self-learning Monte Carlo with deep neural networks. Phys. Rev. B, 2018, 97(20): 205140
https://doi.org/10.1103/PhysRevB.97.205140
43 Wang C. , Zhai H. . Machine learning of frustrated classical spin models (i): Principal component analysis. Phys. Rev. B, 2017, 96(14): 144432
https://doi.org/10.1103/PhysRevB.96.144432
44 Zhang P. , Shen H. , Zhai H. . Machine learning topological invariants with neural networks. Phys. Rev. Lett., 2018, 120(6): 066401
https://doi.org/10.1103/PhysRevLett.120.066401
45 Wang C. , Zhai H. . Machine learning of frustrated classical spin models (ii): Kernel principal component analysis. Front. Phys., 2018, 13(5): 130507
https://doi.org/10.1007/s11467-018-0798-7
46 Sun N. , Yi J. , Zhang P. , Shen H. , Zhai H. . Deep learning topological invariants of band insulators. Phys. Rev. B, 2018, 98(8): 085402
https://doi.org/10.1103/PhysRevB.98.085402
47 Song T. , Lee H. . Accelerated continuous time quantum Monte Carlo method with machine learning. Phys. Rev. B, 2019, 100(4): 045153
https://doi.org/10.1103/PhysRevB.100.045153
48 Wang C. , Zhai H. , Z. You Y. . Emergent Schrödinger equation in an introspective machine learning architecture. Sci. Bull. (Beijing), 2019, 64(17): 1228
https://doi.org/10.1016/j.scib.2019.07.014
49 Zhang Y. , Mesaros A. , Fujita K. , D. Edkins S. , H. Hamidian M. , Ch’ng K. , Eisaki H. , Uchida S. , C. S. Davis J. , Khatami E. , A. Kim E. . Machine learning in electronic-quantum-matter imaging experiments. Nature, 2019, 570(7762): 484
https://doi.org/10.1038/s41586-019-1319-8
50 S. Rem B. , Käming N. , Tarnowski M. , Asteria L. , Fläschner N. , Becker C. , Sengstock K. , Weitenberg C. . Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys., 2019, 15(9): 917
https://doi.org/10.1038/s41567-019-0554-0
51 Bohrdt A. , S. Chiu C. , Ji G. , Xu M. , Greif D. , Greiner M. , Demler E. , Grusdt F. , Knap M. . Classifying snapshots of the doped Hubbard model with machine learning. Nat. Phys., 2019, 15(9): 921
https://doi.org/10.1038/s41567-019-0565-x
52 Yao J. , Wu Y. , Koo J. , Yan B. , Zhai H. . Active learning algorithm for computational physics. Phys. Rev. Res., 2020, 2(1): 013287
https://doi.org/10.1103/PhysRevResearch.2.013287
53 Torlai G. , Timar B. , P. L. van Nieuwenburg E. , Levine H. , Omran A. , Keesling A. , Bernien H. , Greiner M. , Vuletić V. , D. Lukin M. , G. Melko R. , Endres M. . Integrating neural networks with a quantum simulator for state reconstruction. Phys. Rev. Lett., 2019, 123(23): 230504
https://doi.org/10.1103/PhysRevLett.123.230504
54 M. Palmieri A. , Kovlakov E. , Bianchi F. , Yudin D. , Straupe S. , D. Biamonte J. , Kulik S. . Experimental neural network enhanced quantum tomography. npj Quantum Inf., 2020, 6(1): 20
https://doi.org/10.1038/s41534-020-0248-6
55 Wu Y. , Meng Z. , Wen K. , Mi C. , Zhang J. , Zhai H. . Active learning approach to optimization of experimental control. Chin. Phys. Lett., 2020, 37(10): 103201
https://doi.org/10.1088/0256-307X/37/10/103201
56 Saggio V. , E. Asenbeck B. , Hamann A. , Strömberg T. , Schiansky P. , Dunjko V. , Friis N. , C. Harris N. , Hochberg M. , Englund D. , Wölk S. , J. Briegel H. , Walther P. . Experimental quantum speed-up in reinforcement learning agents. Nature, 2021, 591(7849): 229
https://doi.org/10.1038/s41586-021-03242-7
57 Baum Y. , Amico M. , Howell S. , Hush M. , Liuzzi M. , Mundada P. , Merkh T. , R. R. Carvalho A. , J. Biercuk M. . Seantal deep reinforcement learning for error-robust gate-set design on a superconducting quantum computer. PRX Quantum, 2021, 2(4): 040324
https://doi.org/10.1103/PRXQuantum.2.040324
58 Castaldo D. , Rosa M. , Corni S. . Quantum optimal control with quantum computers: A hybrid algorithm featuring machine learning optimization. Phys. Rev. A, 2021, 103(2): 022613
https://doi.org/10.1103/PhysRevA.103.022613
59 V. Sivak V. , Eickbusch A. , Liu H. , Royer B. , Tsioutsios I. , H. Devoret M. . Model-free quantum control with reinforcement learning. Phys. Rev. X, 2022, 12(1): 011059
https://doi.org/10.1103/PhysRevX.12.011059
60 A. Erdman P. , Noé F. . Identifying optimal cycles in quantum thermal machines with reinforcement-learning. npj Quantum Inf., 2022, 8(1): 1
https://doi.org/10.1038/s41534-021-00512-0
61 F. Langer M. , Goeßmann A. , Rupp M. . Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning. npj Comput. Mater., 2022, 8(1): 41
https://doi.org/10.1038/s41524-022-00721-x
62 A. Luchnikov I. , O. Kiktenko E. , A. Gavreev M. , Ouerdane H. , N. Filippov S. , K. Fedorov A. . Probing non-Markovian quantum dynamics with data-driven analysis: Beyond “blackbox” machine-learning models. Phys. Rev. Res., 2022, 4(4): 043002
https://doi.org/10.1103/PhysRevResearch.4.043002
63 Khait I. , Carrasquilla J. , Segal D. . Optimal control of quantum thermal machines using machine learning. Phys. Rev. Res., 2022, 4(1): L012029
https://doi.org/10.1103/PhysRevResearch.4.L012029
64 Carrasquilla J. , G. Melko R. . Machine learning phases of matter. Nat. Phys., 2017, 13(5): 431
https://doi.org/10.1038/nphys4035
65 P. L. van Nieuwenburg E. , H. Liu Y. , D. Huber S. . Learning phase transitions by confusion. Nat. Phys., 2017, 13(5): 435
https://doi.org/10.1038/nphys4037
66 Zhang Y. , A. Kim E. . Quantum loop topography for machine learning. Phys. Rev. Lett., 2017, 118(21): 216401
https://doi.org/10.1103/PhysRevLett.118.216401
67 L. Deng D. , Li X. , Das Sarma S. . Machine learning topological states. Phys. Rev. B, 2017, 96(19): 195145
https://doi.org/10.1103/PhysRevB.96.195145
68 H. Liu Y. , P. L. van Nieuwenburg E. . Discriminative cooperative networks for detecting phase transitions. Phys. Rev. Lett., 2018, 120(17): 176401
https://doi.org/10.1103/PhysRevLett.120.176401
69 Y. Dong X. , Pollmann F. , F. Zhang X. . Machine learning of quantum phase transitions. Phys. Rev. B, 2019, 99(12): 121104
https://doi.org/10.1103/PhysRevB.99.121104
70 Carleo G. , Troyer M. . Solving the quantum many-body problem with artificial neural networks. Science, 2017, 355(6325): 602
https://doi.org/10.1126/science.aag2302
71 Gao X. , M. Duan L. . Efficient representation of quantum many-body states with deep neural networks. Nat. Commun., 2017, 8(1): 662
https://doi.org/10.1038/s41467-017-00705-2
72 Cai Z. , Liu J. . Approximating quantum many-body wave functions using artificial neural networks. Phys. Rev. B, 2018, 97(3): 035116
https://doi.org/10.1103/PhysRevB.97.035116
73 Saito H. . Method to solve quantum few-body problems with artificial neural networks. J. Phys. Soc. Jpn., 2018, 87(7): 074002
https://doi.org/10.7566/JPSJ.87.074002
74 Torlai G. , Mazzola G. , Carrasquilla J. , Troyer M. , Melko R. , Carleo G. . Neuralnetwork quantum state tomography. Nat. Phys., 2018, 14(5): 447
https://doi.org/10.1038/s41567-018-0048-5
75 Wu Y. , Zhang P. , Shen H. , Zhai H. . Visualizing a neural network that develops quantum perturbation theory. Phys. Rev. A, 2018, 98(1): 010701
https://doi.org/10.1103/PhysRevA.98.010701
76 Wang C. , Li H. , Hao Z. , Li X. , Zou C. , Cai P. , Wang Y. , Z. You Y. , Zhai H. . Machine learning identification of impurities in the STM images. Chin. Phys. B, 2020, 29(11): 116805
https://doi.org/10.1088/1674-1056/abc0d5
77 Shahriari B. , Swersky K. , Wang Z. , P. Adams R. , de Freitas N. . Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE, 2016, 104(1): 148
https://doi.org/10.1109/JPROC.2015.2494218
78 A. Vargas-Hernández R. , Guan Y. , H. Zhang D. , V. Krems R. . Bayesian optimization for the inverse scattering problem in quantum reaction dynamics. New J. Phys., 2019, 21(2): 022001
https://doi.org/10.1088/1367-2630/ab0099
79 Mukherjee R. , Sauvage F. , Xie H. , Löw R. , Mintert F. . Preparation of ordered states in ultra-cold gases using Bayesian optimization. New J. Phys., 2020, 22(7): 075001
https://doi.org/10.1088/1367-2630/ab8677
80 Kuroś A. , Mukherjee R. , Golletz W. , Sauvage F. , Giergiel K. , Mintert F. , Sacha K. . Phase diagram and optimal control for n-tupling discrete time crystal. New J. Phys., 2020, 22(9): 095001
https://doi.org/10.1088/1367-2630/abb03e
81 Sauvage F. , Mintert F. . Optimal quantum control with poor statistics. PRX Quantum, 2020, 1(2): 020322
https://doi.org/10.1103/PRXQuantum.1.020322
82 T. Belmiro Chu C. , L. Sheu Y. , I. Chu S. . Bayesian optimal control of the ultrashort circularly polarized attosecond pulse generation by two-color polarization gating. Opt. Express, 2021, 29(21): 32900
https://doi.org/10.1364/OE.438212
83 Kuroś A. , Mukherjee R. , Mintert F. , Sacha K. . Controlled preparation of phases in two-dimensional time crystals. Phys. Rev. Res., 2021, 3(4): 043203
https://doi.org/10.1103/PhysRevResearch.3.043203
84 J. Xie Y. , N. Dai H. , S. Yuan Z. , Deng Y. , Li X. , A. Chen Y. , W. Pan J. . Bayesian learning for optimal control of quantum many-body states in optical lattices. Phys. Rev. A, 2022, 106(1): 013316
https://doi.org/10.1103/PhysRevA.106.013316
85 L. Cortes C. , Lefebvre P. , Lauk N. , J. Davis M. , Sinclair N. , K. Gray S. , Oblak D. . Sample-efficient adaptive calibration of quantum networks using Bayesian optimization. Phys. Rev. Appl., 2022, 17(3): 034067
https://doi.org/10.1103/PhysRevApplied.17.034067
86 Jacobs K. , A. Steck D. . A straightforward introduction to continuous quantum measurement. Contemp. Phys., 2006, 47(5): 279
https://doi.org/10.1080/00107510601101934
87 L. Qi X. , Ranard D. . Determining a local Hamiltonian from a single eigenstate. Quantum, 2019, 3: 159
https://doi.org/10.22331/q-2019-07-08-159
88 Bairey E. , Arad I. , H. Lindner N. . Learning a local Hamiltonian from local measurements. Phys. Rev. Lett., 2019, 122(2): 020504
https://doi.org/10.1103/PhysRevLett.122.020504
89 Chertkov E. , K. Clark B. . Computational inverse method for constructing spaces of quantum models from wave functions. Phys. Rev. X, 2018, 8(3): 031029
https://doi.org/10.1103/PhysRevX.8.031029
90 Li Z. , Zou L. , H. Hsieh T. . Hsieh. Hamiltonian tomography via quantum quench. Phys. Rev. Lett., 2020, 124(16): 160502
https://doi.org/10.1103/PhysRevLett.124.160502
91 Yao Z. , Pan L. , Liu S. , Zhang P. . Bounding entanglement entropy using zeros of local correlation matrices. Phys. Rev. Res., 2022, 4(4): L042037
https://doi.org/10.1103/PhysRevResearch.4.L042037
92 N. Wu L. , Eckardt A. . Cooling and state preparation in an optical lattice via Markovian feedback control. Phys. Rev. Res., 2022, 4(2): L022045
https://doi.org/10.1103/PhysRevResearch.4.L022045
93 Ritsch H. , Domokos P. , Brennecke F. , Esslinger T. . Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys., 2013, 85(2): 553
https://doi.org/10.1103/RevModPhys.85.553
94 J. Elliott T. , Kozlowski W. , F. Caballero-Benitez S. , B. Mekhov I. . Multipartite entangled spatial modes of ultracold atoms generated and controlled by quantum measurement. Phys. Rev. Lett., 2015, 114(11): 113604
https://doi.org/10.1103/PhysRevLett.114.113604
95 Ashida Y. , Ueda M. . Diffraction-unlimited position measurement of ultracold atoms in an optical lattice. Phys. Rev. Lett., 2015, 115(9): 095301
https://doi.org/10.1103/PhysRevLett.115.095301
96 W. Shor P., Fault-tolerant quantum computation, in: Proceedings of 37th Conference on Foundations of Computer Science, pp 56–65, IEEE, 1996
97 Aharonov D.Ben-Or M., Fault-tolerant quantum computation with constant error, in: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp 176–188, 1997
98 J. Preskill, Fault-tolerant quantum computation, in: Introduction to Quantum Computation and Information, pp 213–269, World Scientific, 1998
99 Gottesman D. . Theory of fault-tolerant quantum computation. Phys. Rev. A, 1998, 57(1): 127
https://doi.org/10.1103/PhysRevA.57.127
100 Gyongyosi L. . Quantum state optimization and computational pathway evaluation for gate-model quantum computers. Sci. Rep., 2020, 10(1): 4543
https://doi.org/10.1038/s41598-020-61316-4
101 Gyongyosi L. , Imre S. . Dense quantum measurement theory. Sci. Rep., 2019, 9(1): 6755
https://doi.org/10.1038/s41598-019-43250-2
102 Gyongyosi L. , Imre S. . Training optimization for gate-model quantum neural networks. Sci. Rep., 2019, 9(1): 12679
https://doi.org/10.1038/s41598-019-48892-w
103 Gyongyosi L. , Imre S. . Advances in the quantum internet. Commun. ACM, 2022, 65(8): 52
https://doi.org/10.1145/3524455
104 G. D. Torre E. , Diehl S. , D. Lukin M. , Sachdev S. , Strack P. . Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities. Phys. Rev. A, 2013, 87(2): 023831
https://doi.org/10.1103/PhysRevA.87.023831
105 F. Maghrebi M. , V. Gorshkov A. . Nonequilibrium many-body steady states via Keldysh formalism. Phys. Rev. B, 2016, 93(1): 014307
https://doi.org/10.1103/PhysRevB.93.014307
106 Foss-Feig M. , Niroula P. , T. Young J. , Hafezi M. , V. Gorshkov A. , M. Wilson R. , F. Maghrebi M. . Emergent equilibrium in many-body optical bistability. Phys. Rev. A, 2017, 95(4): 043826
https://doi.org/10.1103/PhysRevA.95.043826
107 Skinner B. , Ruhman J. , Nahum A. . Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X, 2019, 9(3): 031009
https://doi.org/10.1103/PhysRevX.9.031009
108 Choi S. , Bao Y. , L. Qi X. , Altman E. . Quantum error correction in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett., 2020, 125(3): 030505
https://doi.org/10.1103/PhysRevLett.125.030505
109 Tang Q. , Zhu W. . Measurement-induced phase transition: A case study in the nonintegrable model by density matrix renormalization group calculations. Phys. Rev. Res., 2020, 2(1): 013022
https://doi.org/10.1103/PhysRevResearch.2.013022
110 Fan R. , Vijay S. , Vishwanath A. , Z. You Y. . Self-organized error correction in random unitary circuits with measurement. Phys. Rev. B, 2021, 103(17): 174309
https://doi.org/10.1103/PhysRevB.103.174309
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed