Room-temperature ferroelectricity in van der Waals SnP2S6
Chaowei He1, Jiantian Zhang1, Li Gong2, Peng Yu1()
1. State Key Laboratory of Optoelectronic Materials and Technologies Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China 2. Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
Two-dimensional (2D) ferroelectric materials, which possess electrically switchable spontaneous polarization and can be easily integrated with semiconductor technologies, is of utmost importance in the advancement of high-integration low-power nanoelectronics. Despite the experimental discovery of certain 2D ferroelectric materials such as CuInP2S6 and In2Se3, achieving stable ferroelectricity at room temperature in these materials continues to present a significant challenge. Herein, stable ferroelectric order at room temperature in the 2D limit is demonstrated in van der Waals SnP2S6 atom layers, which can be fabricated via mechanical exfoliation of bulk SnP2S6 crystals. Switchable polarization is observed in thin SnP2S6 of ~7 nm. Importantly, a van der Waals ferroelectric field-effect transistor (Fe-FET) with ferroelectric SnP2S6 as top-gate insulator and p-type WTe0.6Se1.4 as the channel was designed and fabricated successfully, which exhibits a clear clockwise hysteresis loop in transfer characteristics, demonstrating ferroelectric properties of SnP2S6 atomic layers. In addition, a multilayer graphene/SnP2S6/multilayer graphene van der Waals vertical heterostructure phototransistor was also fabricated successfully, exhibiting improved optoelectronic performances with a responsivity (R) of 2.9 A/W and a detectivity (D) of 1.4 × 1012 Jones. Our results show that SnP2S6 is a promising 2D ferroelectric material for ferroelectric-integrated low-power 2D devices.
D. Wenbiao Niu G. , Jia Z. , Q. Ma X. , Y. Zhao J. , Zhou K. , T. Han S. , C. Kuo C. , Zhou Y. . Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys., 2024, 19(1): 13402 https://doi.org/10.1007/s11467-023-1329-8
2
Sano T. , Nishio Y. , Hamada Y. , Takahashi H. , Usuki T. , Shibata K. . Design of conjugated molecular materials for optoelectronics. J. Mater. Chem., 2000, 10(1): 157 https://doi.org/10.1039/a903239h
3
B. Bersuker I. , Y. Ogurtsov I. , V. Shaparev Y. . Temperature dependence of the mean dipole moment of symmetrical molecular systems. Theor. Exp. Chem., 1975, 9(4): 351 https://doi.org/10.1007/BF00523746
4
Li P. , M. Gao Z. , S. Huang X. , F. Wang L. , F. Zhang W. , Z. Guo H. . Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction. Front. Phys., 2018, 13: 136803 https://doi.org/10.1007/s11467-018-0819-6
5
M. D. Coey J. , Venkatesan M. , Stamenov P. , B. Fitzgerald C. , S. Dorneles L. . Magnetism in hafnium dioxide. Phys. Rev. B, 2005, 72(2): 024450 https://doi.org/10.1103/PhysRevB.72.024450
G. Schlom D. , Q. Chen L. , B. Eom C. , M. Rabe K. , K. Streiffer S. , M. Triscone J. . Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res., 2007, 37(1): 589 https://doi.org/10.1146/annurev.matsci.37.061206.113016
8
H. Wu M. . Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities. ACS Nano, 2021, 15(6): 9229 https://doi.org/10.1021/acsnano.0c08483
9
Liu Y. , Huang Y. , F. Duan X. . Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323 https://doi.org/10.1038/s41586-019-1013-x
10
H. Wu M. , D. Burton J. , Y. Tsymbal E. , C. Zeng X. , Jena P. . Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Phys. Rev. B, 2013, 87(8): 081406 https://doi.org/10.1103/PhysRevB.87.081406
11
G. Yuan S. , Luo X. , L. Chan H. , C. Xiao C. , W. Dai Y. , H. Xie M. , H. Hao J. . Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775 https://doi.org/10.1038/s41467-019-09669-x
12
N. Shirodkar S. , V. Waghmare U. . Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett., 2014, 112(15): 157601 https://doi.org/10.1103/PhysRevLett.112.157601
13
X. Zheng C. , Yu L. , Zhu L. , L. Collins J. , Kim D. , D. Lou Y. , Xu C. , Li M. , Wei Z. , P. Zhang Y. , T. Edmonds M. , Q. Li S. , Seidel J. , Zhu Y. , Z. Liu J. , X. Tang W. , S. Fuhrer M. . Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv., 2018, 4(7): eaar7720 https://doi.org/10.1126/sciadv.aar7720
14
J. Ding W. , B. Zhu J. , Wang Z. , F. Gao Y. , Xiao D. , Gu Y. , Y. Zhang Z. , G. Zhu W. . Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2‒VI3 van der Waals materials. Nat. Commun., 2017, 8(1): 14956 https://doi.org/10.1038/ncomms14956
15
C. Liu F. , You L. , L. Seyler K. , B. Li X. , Yu P. , H. Lin J. , W. Wang X. , D. Zhou J. , Wang H. , Y. He H. , T. Pantelides S. , Zhou W. , Sharma P. , D. Xu X. , M. Ajayan P. , L. Wang J. , Liu Z. . Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun., 2016, 7: 12357 https://doi.org/10.1038/ncomms12357
16
Belianinov A. , He Q. , Dziaugys A. , Maksymovych P. , Eliseev E. , Borisevich A. , Morozovska A. , Banys J. , Vysochanskii Y. , V. Kalinin S. . CuInP2S6 room temperature layered ferroelectric. Nano Lett., 2015, 15(6): 3808 https://doi.org/10.1021/acs.nanolett.5b00491
17
Z. Hanakata P. , Carvalho A. , K. Campbell D. , S. Park H. . Polarization and valley switching in monolayer group-IV monochalcogenides. Phys. Rev. B, 2016, 94(3): 035304 https://doi.org/10.1103/PhysRevB.94.035304
18
X. Fei R. , Kang W. , Yang L. . Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett., 2016, 117(9): 097601 https://doi.org/10.1103/PhysRevLett.117.097601
19
Alsubaie F. , Muraykhan M. , Zhang L. , C. Qi D. , Liao T. , Z. Kou L. , J. Du A. , Tang C. . Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material. Front. Phys., 2024, 19(1): 13201 https://doi.org/10.1007/s11467-023-1330-2
20
Y. Shuang Zhou L. , Zhou H. , Pu Y. , Gui Z. , Wang J. . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301 https://doi.org/10.1007/s11467-020-0986-0
21
Niu L. , C. Liu F. , S. Zeng Q. , Y. Zhu X. , L. Wang Y. , Yu P. , Shi J. , H. Lin J. , D. Zhou J. , D. Fu Q. , Zhou W. , Yu T. , F. Liu X. , Liu Z. . Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy, 2019, 58: 596 https://doi.org/10.1016/j.nanoen.2019.01.085
22
Wang J. , L. Liu C. , B. Zhang L. , Chen J. , Chen J. , L. Yu F. , Y. Zhao Z. , W. Tang W. , Li X. , Zhang S. , H. Li G. , Wang L. , Cheng Y. , S. Chen X. . Selective enhancement of photoresponse with ferroelectric-controlled BP/In2Se3 vdW heterojunction. Adv. Sci. (Weinh.), 2023, 10(11): 2205813 https://doi.org/10.1002/advs.202205813
23
Cai Y. , Yang J. , Wang F. , Li S. , Wang Y. , Zhan X. , Wang F. , Cheng R. , Wang Z. , He J. . Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308 https://doi.org/10.1007/s11467-022-1241-7
24
Liang Q. , Zheng Y. , Du C. , Luo Y. , Zhao J. , Ren H. , Xu J. , Yan Q. . Asymmetric-layered tin thiophosphate: An emerging 2D ternary anode for high-performance sodium ion full cell. ACS Nano, 2018, 12(12): 12902 https://doi.org/10.1021/acsnano.8b08229
25
Zhang Y. , K. Wang F. , Feng X. , D. Sun Z. , W. Su J. , Zhao M. , Z. Wang S. , Z. Hu X. , Y. Zhai T. . Inversion symmetry broken 2D SnP2S6 with strong nonlinear optical response. Nano Res., 2022, 15(3): 2391 https://doi.org/10.1007/s12274-021-3806-0
26
Wang Z. , D. Willett R. , A. Laitinen R. , A. Cleary D. . Synthesis and crystal structure of SnP2S6. Chem. Mater., 1995, 7(5): 856 https://doi.org/10.1021/cm00053a007
27
P. Studenyak I. , V. Mitrovcij V. , S. Kovacs G. , A. Mykajlo O. , I. Gurzan M. , M. Vysochanskii Y. . Temperature variation of optical absorption edge in Sn2P2S6 and SnP2S6 crystals. Ferroelectrics, 2001, 254(1): 295 https://doi.org/10.1080/00150190108215009
28
S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 https://doi.org/10.1126/science.1102896
29
Zhang Y. , K. Wang F. , Feng X. , Zhang Z. , L. Liu K. , F. Xia F. , X. Liang W. , Z. Hu X. , Ma Y. , Q. Li H. , C. Xing G. , Y. Zhai T. . Self-trapped excitons in 2D SnP2S6 crystal with intrinsic structural distortion. Adv. Funct. Mater., 2022, 32(38): 2205757 https://doi.org/10.1002/adfm.202205757
30
Y. He J. , H. Lee S. , Naccarato F. , Brunin G. , Zu R. , X. Wang Y. , X. Miao L. , Y. Wang H. , Alem N. , Hautier G. , M. Rignanese G. , Q. Mao Z. , Gopalan V. . SnP2S6: A promising infrared nonlinear optical crystal with strongnonresonant second harmonic generation and phase-matchability. ACS Photonics, 2022, 9(5): 1724 https://doi.org/10.1021/acsphotonics.2c00131
31
Bourdon X. , B. Cajipe V. . Soft-chemistry forms of Sn2P2S6 and CuInP2S6. J. Solid State Chem., 1998, 141(1): 290 https://doi.org/10.1006/jssc.1998.7919
32
S. Cheema S. , Kwon D. , Shanker N. , dos Reis R. , L. Hsu S. , Xiao J. , Zhang H. , Wagner R. , Datar A. , R. McCarter M. , R. Serrao C. , K. Yadav A. , Karbasian G. , H. Hsu C. , J. Tan A. , C. Wang L. , Thakare V. , Zhang X. , Mehta A. , Karapetrova E. , V. Chopdekar R. , Shafer P. , Arenholz E. , Hu C. , Proksch R. , Ramesh R. , Ciston J. , Salahuddin S. . Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 2020, 580(7804): 478 https://doi.org/10.1038/s41586-020-2208-x
33
G. Han M. , S. J. Marshall M. , J. Wu L. , A. Schofield M. , Aoki T. , Twesten R. , Hoffman J. , J. Walker F. , H. Ahn C. , M. Zhu Y. . Interface-induced nonswitchable domains in ferroelectric thin films. Nat. Commun., 2014, 5(1): 4693 https://doi.org/10.1038/ncomms5693
34
Stengel M. , A. Spaldin N. . Origin of the dielectric dead layer in nanoscale capacitors. Nature, 2006, 443(7112): 679 https://doi.org/10.1038/nature05148
35
Tokumitsu E. , Okamoto K. , Ishiwara H. . Low voltage operation of nonvolatile metal‒ferroelectric‒metal‒insulator‒semiconductor (MFMIS)-field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures. Jpn. J. Appl. Phys., 2001, 40(4S): 2917 https://doi.org/10.1143/JJAP.40.2917
36
M. Xue J. , Sanchez-Yamagishi J. , Bulmash D. , Jacquod P. , Deshpande A. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. , J. Leroy B. . Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater., 2011, 10(4): 282 https://doi.org/10.1038/nmat2968
37
Wang C. , J. Jin K. , T. Xu Z. , Wang L. , Ge C. , B. Lu H. , Z. Guo H. , He M. , Z. Yang G. . Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films. Appl. Phys. Lett., 2011, 98(19): 192901 https://doi.org/10.1063/1.3589814
38
O. Island J. , I. Blanter S. , Buscema M. , S. J. van der Zant H. , Castellanos-Gomez A. . Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett., 2015, 15(12): 7853 https://doi.org/10.1021/acs.nanolett.5b02523
Yu P. , S. Zeng Q. , Zhu C. , J. Zhou L. , N. Zhao W. , C. Tong J. , Liu Z. , W. Yang G. . Ternary Ta2PdS6 atomic layers for an ultrahigh broadband photoresponsive phototransistor. Adv. Mater., 2021, 33(2): 2005607 https://doi.org/10.1002/adma.202005607
41
J. Liang Q. , X. Wang Q. , Zhang Q. , X. Wei J. , X. D. Lim S. , Zhu R. , X. Hu J. , Wei W. , Lee C. , Sow C. , J. Zhang W. , T. S. Wee A. . High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater., 2019, 31(24): 1807609 https://doi.org/10.1002/adma.201807609
42
W. Liang G. , H. Zeng L. , H. Tsang Y. , L. Tao L. , Y. Tang C. , K. Cheng P. , Long H. , Liu X. , Li J. , L. Qu J. , Wen Q. . Technique and model for modifying the saturable absorption (SA) properties of 2D nanofilms by considering interband exciton recombination. J. Mater. Chem. C, 2018, 6(28): 7501 https://doi.org/10.1039/C8TC00498F
43
S. Guo Q. , Pospischil A. , Bhuiyan M. , Jiang H. , Tian H. , Farmer D. , C. Deng B. , Li C. , J. Han S. , Wang H. , F. Xia Q. , P. Ma T. , Mueller T. , N. Xia F. . Black phosphorus mid-infrared photodetectors with high gain. Nano Lett., 2016, 16(7): 4648 https://doi.org/10.1021/acs.nanolett.6b01977
44
He W. , L. Kong L. , Yu P. , W. Yang G. . Record-high work-function p-type CuBiP2Se6 atomic layers for high-photoresponse van der Waals vertical heterostructure phototransistor. Adv. Mater., 2023, 35(14): 2209995 https://doi.org/10.1002/adma.202209995
45
H. Zeng L. , Wu D. , H. Lin S. , Xie C. , Y. Yuan H. , Lu W. , P. Lau S. , Chai Y. , B. Luo L. , J. Li Z. , H. Tsang Y. . Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater., 2019, 29(1): 1806878 https://doi.org/10.1002/adfm.201806878
46
Wu D. , W. Guo J. , Du J. , X. Xia C. , H. Zeng L. , Z. Tian Y. , F. Shi Z. , T. Tian Y. , J. Li X. , H. Tsang Y. , S. Jie J. . Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano, 2019, 13(9): 9907 https://doi.org/10.1021/acsnano.9b03994