1. Institute of Electromagnetics and Acoustics and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China 2. Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore 3. Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China 4. Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
Vortex wave and plane wave, as two most fundamental forms of wave propagation, are widely applied in various research fields. However, there is currently a lack of basic mechanism to enable arbitrary conversion between them. In this paper, we propose a new paradigm of extremely anisotropic acoustic metasurface (AM) to achieve the efficient conversion from 2D vortex waves with arbitrary orbital angular momentum (OAM) to plane waves. The underlying physics of this conversion process is ensured by the symmetry shift of AM medium parameters and the directional compensation of phase. Moreover, this novel phenomenon is further verified by analytical calculations, numerical demonstrations, and acoustic experiments, and the deflection angle and direction of the converted plane waves are qualitatively and quantitatively confirmed by a simple formula. Our work provides new possibilities for arbitrary manipulation of acoustic vortex, and holds potential applications in acoustic communication and OAM-based devices.
Yu N. , Genevet P. , A. Kats M. , Aieta F. , P. Tetienne J. , Capasso F. , Gaburro Z. . Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 2011, 334(6054): 333 https://doi.org/10.1126/science.1210713
Shen C. , Xie Y. , Li J. , A. Cummer S. , Jing Y. . Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Appl. Phys. Lett., 2016, 108(22): 223502 https://doi.org/10.1063/1.4953264
4
Fu Y. , Shen C. , Cao Y. , Gao L. , Chen H. , T. Chan C. , A. Cummer S. , Xu Y. . Reversal of transmission and reflection based on acoustic metagratings with integer parity design. Nat. Commun., 2019, 10(1): 2326 https://doi.org/10.1038/s41467-019-10377-9
Zou Z. , Lirette R. , Zhang L. . Orbital angular momentum reversal and asymmetry in acoustic vortex beam reflection. Phys. Rev. Lett., 2020, 125(7): 074301 https://doi.org/10.1103/PhysRevLett.125.074301
7
Y. Yermakov O. , I. Ovcharenko A. , A. Bogdanov A. , V. Iorsh I. , Y. Bliokh K. , S. Kivshar Y. . Spin control of light with hyperbolic metasurfaces. Phys. Rev. B, 2016, 94(7): 075446 https://doi.org/10.1103/PhysRevB.94.075446
8
Li L. , Zhao H. , Liu C. , Li L. , J. Cui T. . Intelligent metasurfaces: Control, communication and computing. eLight, 2022, 2: 7 https://doi.org/10.1186/s43593-022-00013-3
9
Fang B. , Feng D. , Chen P. , Shi L. , Cai J. , Li J. , Li C. , Hong Z. , Jing X. . Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys., 2022, 17(5): 53502 https://doi.org/10.1007/s11467-021-1148-8
10
Hao Z. , Zhuang Y. , Chen Y. , Liu Y. , Chen H. . Effective medium theory of checkboard structures in the long-wavelength limit. Chin. Opt. Lett., 2020, 18(7): 072401 https://doi.org/10.3788/COL202018.072401
11
Jiang X. , Li Y. , Liang B. , Cheng J. , Zhang L. . Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett., 2016, 117(3): 034301 https://doi.org/10.1103/PhysRevLett.117.034301
12
Fu Y. , Shen C. , Zhu X. , Li J. , Liu Y. , A. Cummer S. , Xu Y. . Sound vortex diffraction via topological charge in phase gradient metagratings. Sci. Adv., 2020, 6(40): eaba9876 https://doi.org/10.1126/sciadv.aba9876
13
Fu Y. , Tian Y. , Li X. , Yang S. , Liu Y. , Xu Y. , Lu M. . Asymmetric generation of acoustic vortex using dual-layer metasurfaces. Phys. Rev. Lett., 2022, 128(10): 104501 https://doi.org/10.1103/PhysRevLett.128.104501
14
Guo S.Ya Z.Wu P.Wan M., A review on acoustic vortices: Generation, characterization, applications and perspectives, J. Appl. Phys. 132(21), 210701 (2022)
Xie Y. , Fu Y. , Jia Z. , Li J. , Shen C. , Xu Y. , Chen H. , A. Cummer S. . Acoustic imaging with metamaterial Luneburg lenses. Sci. Rep., 2018, 8(1): 16188 https://doi.org/10.1038/s41598-018-34581-7
17
Hu C. , Xue S. , Yin Y. , Hao Z. , Zhou Y. , Chen H. . Acoustic super-resolution imaging based on solid immersion 3D Maxwell’s fish-eye lens. Appl. Phys. Lett., 2022, 120(19): 192202 https://doi.org/10.1063/5.0093339
18
Hao Z. , Zhou Y. , Wu B. , Liu Y. , Chen H. . Improving resolution of superlens based on solid immersion mechanism. Chin. Phys. B, 2023, 32(6): 064211 https://doi.org/10.1088/1674-1056/ac8726
19
D. Muelas-Hurtado R. , Volke-Sepúlveda K. , L. Ealo J. , Nori F. , A. Alonso M. , Y. Bliokh K. , Brasselet E. . Observation of polarization singularities and topological textures in sound waves. Phys. Rev. Lett., 2022, 129(20): 204301 https://doi.org/10.1103/PhysRevLett.129.204301
20
Zhang H. , Sun Y. , Huang J. , Wu B. , Yang Z. , Y. Bliokh K. , Ruan Z. . Topologically crafted spatiotemporal vortices in acoustics. Nat. Commun., 2023, 14(1): 6238 https://doi.org/10.1038/s41467-023-41776-8
21
Liu M. , Zhu W. , Huo P. , Feng L. , Song M. , Zhang C. , Chen L. , J. Lezec H. , Lu Y. , Agrawal A. , Xu T. . Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light: Sci. Appl., 2021, 10(1): 107 https://doi.org/10.1038/s41377-021-00552-3
Y. Fu Y. , Q. Tao J. , L. Song A. , W. Liu Y. , D. Xu Y. . Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front. Phys., 2020, 15(5): 52502 https://doi.org/10.1007/s11467-020-0968-2
24
Li Z. , Cao G. , Li C. , Dong S. , Deng Y. , Liu X. , S. Ho J. , W. Qiu C. . Non-Hermitian electromagnetic metasurfaces at exceptional points. Prog. Electromagn. Res., 2021, 171: 1 https://doi.org/10.2528/PIER21051703
Cao Y. , Yu B. , Fu Y. , Gao L. , Xu Y. . Phase-gradient metasurfaces based on local Fabry–Pérot resonances. Chin. Phys. Lett., 2020, 37(9): 097801 https://doi.org/10.1088/0256-307X/37/9/097801
27
Jiang X. , Shi C. , Wang Y. , Smalley J. , Cheng J. , Zhang X. . Nonresonant metasurface for fast decoding in acoustic communications. Phys. Rev. Appl., 2020, 13(1): 014014 https://doi.org/10.1103/PhysRevApplied.13.014014
28
Song H. , Wang N. , Yu K. , Pei J. , P. Wang G. . Disorder-immune metasurfaces with constituents exhibiting the anapole mode. New J. Phys., 2020, 22(11): 113011 https://doi.org/10.1088/1367-2630/abc70d
Chen S. , Fan Y. , Yang F. , Sun K. , Fu Q. , Zheng J. , Zhang F. . Coiling-up space metasurface for high-efficient and wide-angle acoustic wavefront steering. Front. Mater., 2021, 8: 790987 https://doi.org/10.3389/fmats.2021.790987
31
Cao Y. , Fu Y. , Zhou Q. , Ou X. , Gao L. , Chen H. , Xu Y. . Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces. Phys. Rev. Appl., 2019, 12(2): 024006 https://doi.org/10.1103/PhysRevApplied.12.024006
32
Hu Z. , He N. , Sun Y. , Jin Y. , He S. . Wideband high-reflection chiral dielectrical metasurface. Prog. Electromagn. Res., 2021, 172: 51 https://doi.org/10.2528/PIER21121903
J. Li S. , Y. Li Z. , S. Huang G. , B. Liu X. , Q. Li R. , Y. Cao X. . Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 2022, 17(6): 62501 https://doi.org/10.1007/s11467-022-1179-9
Li J. , Díaz-Rubio A. , Shen C. , Jia Z. , Tretyakov S. , Cummer S. . Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces. Phys. Rev. Appl., 2019, 11(2): 024016 https://doi.org/10.1103/PhysRevApplied.11.024016
37
Ba Q. , Zhou Y. , Li J. , Xiao W. , Ye L. , Liu Y. , Chen J. , Chen H. . Conformal optical black hole for cavity. eLight, 2022, 2: 19 https://doi.org/10.1186/s43593-022-00026-y
38
Meng X. , Chen X. , Yang L. , Xue W. , Zhang A. , E. I. Sha W. , Cheng Q. . Launcher of high-order Bessel vortex beam carrying orbital angular momentum by designing anisotropic holographic metasurface. Appl. Phys. Lett., 2020, 117(24): 243503 https://doi.org/10.1063/5.0031139
39
Shen Y. , Wang X. , Xie Z. , Min C. , Fu X. , Liu Q. , Gong M. , Yuan X. . Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Sci. Appl., 2019, 8(1): 901 https://doi.org/10.1038/s41377-019-0194-2
40
Wang H. , Wang H. , Ruan Q. , Y. E. Chan J. , Zhang W. , Liu H. , D. Rezaei S. , Trisno J. , W. Qiu C. , Gu M. , K. W. Yang J. . Coloured vortex beams with incoherent white light illumination. Nat. Nanotechnol., 2023, 18(3): 2643 https://doi.org/10.1038/s41565-023-01319-0
Díaz-Rubio A. , S. Asadchy V. , Elsakka A. , A. Tretyakov S. . From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv., 2017, 3(8): e1602714 https://doi.org/10.1126/sciadv.1602714
43
Hao Z. , Chen H. , Yin Y. , Qiu C. , Zhu S. , Chen H. . Asymmetric conversion of arbitrary vortex fields via acoustic metasurface. Appl. Phys. Lett., 2023, 123(20): 201702 https://doi.org/10.1063/5.0171813
44
Jin Z. , Janoschka D. , Deng J. , Ge L. , Dreher P. , Frank B. , Hu G. , Ni J. , Yang Y. , Li J. , Yu C. , Lei D. , Li G. , Xiao S. , Mei S. , Giessen H. , M. zu Heringdorf F. , W. Qiu C. . Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight, 2021, 1: 5 https://doi.org/10.1186/s43593-021-00005-9
45
Y. Bliokh K. , Karimi E. , J. Padgett M. , A. Alonso M. , R. Dennis M. . et al.. Roadmap on structured waves. J. Opt., 2023, 25(10): 103001 https://doi.org/10.1088/2040-8986/acea92
46
Jiang X. , Wang N. , Zhang C. , Fang X. , Li S. , Sun X. , Li Y. , Ta D. , Wang W. . Acoustic orbital angular momentum prism for efficient vortex perception. Appl. Phys. Lett., 2021, 118(7): 071901 https://doi.org/10.1063/5.0041398
47
Chen Y. , Hu G. . Broadband and high-transmission metasurface for converting underwater cylindrical waves to plane waves. Phys. Rev. Appl., 2019, 12(4): 044046 https://doi.org/10.1103/PhysRevApplied.12.044046
48
X. Jiang W. , J. Cui T. , F. Ma H. , Y. Zhou X. , Cheng Q. . Cylindrical-to-plane-wave conversion via embedded optical transformation. Appl. Phys. Lett., 2008, 92(26): 261903 https://doi.org/10.1063/1.2953447
49
Guo Y. , Zhu G. , Bian W. , Dong B. , Fang Y. . Orbital angular momentum dichroism caused by the interaction of electric and magnetic dipole moments and the geometrical asymmetry of chiral metal nanoparticles. Phys. Rev. A, 2020, 102(3): 033525 https://doi.org/10.1103/PhysRevA.102.033525
50
Ding F., A review of multifunctional optical gap-surface plasmon metasurfaces, Prog. Electromagn. Res. 174, 55 (2022)
51
Mazanov M. , Yermakov O. . Vortex dynamics and structured darkness of Laguerre‒Gaussian beams transmitted through Q-plates under weak axial-asymmetric incidence. J. Lightwave Technol., 2023, 41(7): 2232 https://doi.org/10.1109/JLT.2022.3226814
52
Kang M. , Ra’di Y. , Farfan D. , Alù A. . Efficient focusing with large numerical aperture using a hybrid metalens. Phys. Rev. Appl., 2020, 13(4): 044016 https://doi.org/10.1103/PhysRevApplied.13.044016
53
Cao Y. , Fu Y. , H. Jiang J. , Gao L. , Xu Y. . Scattering of light with orbital angular momentum from a metallic meta-cylinder with engineered topological charge. ACS Photonics, 2021, 8(7): 2027 https://doi.org/10.1021/acsphotonics.1c00077
54
Pfeiffer C. , Grbic A. . Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett., 2013, 110(19): 197401 https://doi.org/10.1103/PhysRevLett.110.197401