We present a novel feedback control method for quantum systems. Feedback does not affect the controlled system itself. Instead, it controls the unravelling of the quantum channel of interaction between the system and its environment. This interaction can be represented as a history of events. If their informational content is changed, their back-action on the system is also modified. Feedback action is trigged by the events, thus granting the system the degree of control over its own state. The efficiency of the proposed scheme is demonstrated on the example of two-mode atomic Bose-Einstein condensate, with one of its modes subject to phase-contrast imaging in a Mach−Zehnder interferometer. The histories of photocounts in the output channels of the interferometer are used for feedback. Its capabilities of state engineering are studied for different settings of the feedback loop and different numbers of events in the recorded histories.
. [J]. Frontiers of Physics, 2024, 19(4): 41201.
V. A. Tomilin, L. V. Il’ichov. Unravelling-based (auto)control of back-action in atomic Bose−Einstein condensate. Front. Phys. , 2024, 19(4): 41201.
C. Doherty A., Jacobs K.. Feedback control of quantum systems using continuous state estimation. Phys. Rev. A, 1999, 60(4): 2700 https://doi.org/10.1103/PhysRevA.60.2700
5
R. James M.I. Nurdin H.R. Petersen I., H∞ control of linear quantum stochastic systems, IEEE Trans. Automat. Contr. 53(8), 1787 (2008)
M. Brańczyk A., E. M. F. Mendonça P., Gilchrist A., C. Doherty A., D. Bartlett S.. Quantum control of a single qubit. Phys. Rev. A, 2007, 75(1): 012329 https://doi.org/10.1103/PhysRevA.75.012329
8
G. Gillett G., B. Dalton R., P. Lanyon B., P. Almeida M., Barbieri M., J. Pryde G., L. O’Brien J., J. Resch K., D. Bartlett S., G. White A.. Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett., 2010, 104(8): 080503 https://doi.org/10.1103/PhysRevLett.104.080503
9
C. Wang L., L. Huang X., X. Yi X.. Effect of feedback on the control of a two-level dissipative quantum system. Phys. Rev. A, 2008, 78(5): 052112 https://doi.org/10.1103/PhysRevA.78.052112
10
Yan Y., Zou J., M. Xu B., G. Li J., Shao B.. Measurement-based direct quantum feedback control in an open quantum system. Phys. Rev. A, 2013, 88(3): 032320 https://doi.org/10.1103/PhysRevA.88.032320
11
Cao Y., Tian G., C. Zhang Z., H. Yang Y., Y. Wen Q., Gao F.. Composite control for protecting two nonorthogonal qubit states against decoherence. Phys. Rev. A, 2017, 95(3): 032313 https://doi.org/10.1103/PhysRevA.95.032313
12
Uys H.Bassa H.du Toit P.Ghosh S.Konrad T., Quantum control through measurement feedback, Phys. Rev. A 97, 060102(R) (2018)
13
B. Horoshko D., Ya. Kilin S.. Direct detection feedback for preserving quantum coherence in an open cavity. Phys. Rev. Lett., 1997, 78(5): 840 https://doi.org/10.1103/PhysRevLett.78.840
14
R. R. Carvalho A.J. Hope J., Stabilizing entanglement by quantum-jump-based feedback, Phys. Rev. A 76, 010301(R) (2007)
15
Barchielli A., Gregoratti M., Licciardo M.. Feedback control of the fluorescence light squeezing. Europhys. Lett., 2009, 85(1): 14006 https://doi.org/10.1209/0295-5075/85/14006
16
Sayrin C., Dotsenko I., Zhou X., Peaudecerf B., Rybarczyk T., Gleyzes S., Rouchon P., Mirrahimi M., Amini H., Brune M., M. Raimond J., Haroche S.. Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477(7362): 73 https://doi.org/10.1038/nature10376
17
M. Cavaletto S., Harman Z., Pfeifer T., H. Keitel C.. Deterministic strong-field quantum control. Phys. Rev. A, 2017, 95(4): 043413 https://doi.org/10.1103/PhysRevA.95.043413
18
Campagne-Ibarcq P., Flurin E., Roch N., Darson D., Morfin P., Mirrahimi M., H. Devoret M., Mallet F., Huard B.. Persistent control of a superconducting qubit by stroboscopic measurement feedback. Phys. Rev. X, 2013, 3: 021008 https://doi.org/10.1103/PhysRevX.3.021008
19
Ruskov R., Schwab K., N. Korotkov A.. Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback. Phys. Rev. B, 2005, 71(23): 235407 https://doi.org/10.1103/PhysRevB.71.235407
A. Tomilin V.V. Il’ichov L., BEC dynamics in a double-well with interferometric feedback, Ann. Phys. 528(7–8), 619 (2016)
22
A. Tomilin V., V. Il’ichov L.. Correlations of photoemissions in a multiatomic ensemble driven by a cat-state field. Phys. Rev. A, 2017, 96(6): 063805 https://doi.org/10.1103/PhysRevA.96.063805
23
C. J. Wade A., F. Sherson J., Mölmer K.. Squeezing and entanglement of density oscillations in a Bose‒Einstein condensate. Phys. Rev. Lett., 2015, 115(6): 060401 https://doi.org/10.1103/PhysRevLett.115.060401
24
C. J. Wade A., F. Sherson J., Mölmer K.. Manipulation of collective quantum states in Bose‒Einstein condensates by continuous imaging. Phys. Rev. A, 2016, 93(2): 023610 https://doi.org/10.1103/PhysRevA.93.023610
25
J. W. H. Sørensen J., Dalgaard M., H. Kiilerich A., Mölmer K., F. Sherson J.. Quantum control with measurements and quantum Zeno dynamics. Phys. Rev. A, 2018, 98(6): 062317 https://doi.org/10.1103/PhysRevA.98.062317
26
Mazzucchi G., F. Caballero-Benitez S., A. Ivanov D., B. Mekhov I.. Quantum optical feedback control for creating strong correlations in many-body systems. Optica, 2016, 3(11): 1213 https://doi.org/10.1364/OPTICA.3.001213
27
Lin R., Rosa-Medina R., Ferri F., Finger F., Kroeger K., Donner T., Esslinger T., Chitra R.. Dissipation-engineered family of nearly dark states in many-body cavity-atom systems. Phys. Rev. Lett., 2022, 128(15): 153601 https://doi.org/10.1103/PhysRevLett.128.153601
28
A. Ivanov D., Yu. Ivanova T., F. Caballero-Benitez S., B. Mekhov I.. Feedback-induced quantum phase transitions using weak measurements. Phys. Rev. Lett., 2020, 124(1): 010603 https://doi.org/10.1103/PhysRevLett.124.010603
29
C. Stitely K., Finger F., Rosa-Medina R., Ferri F., Donner T., Esslinger T., Parkins S., Krauskopf B.. Quantum fluctuation dynamics of dispersive superradiant pulses in a hybrid light‒matter system. Phys. Rev. Lett., 2023, 131(14): 143604 https://doi.org/10.1103/PhysRevLett.131.143604
30
M. Wiseman H.J. Milburn G., Quantum Measurement and Control, Cambridge: Cambridge University Press, 2010
31
Kullback S.A. Leibler L., Information and Statistics, Wiley, 1959
32
V. Il’ichev L., L. Chapovskii P.. Decoherence of an atomic condensate in a double-well trap at optical probing. JETP Lett., 2015, 102(1): 14 https://doi.org/10.1134/S0021364015130032
33
Gross C., Estève J., K. Oberthaler M., D. Martin A., Ruostekoski J.. Local and spatially extended sub-Poisson atom-number fluctuations in optical lattices. Phys. Rev. A, 2011, 84(1): 011609 https://doi.org/10.1103/PhysRevA.84.011609