Tunable near-infrared light emission from layered TiS3 nanoribbons
Junrong Zhang1,2, Cheng Chen1,2, Yanming Wang1,2, Yang Lu1,2, Honghong Li3, Xingang Hou2, Yaning Liang2,4, Long Fang2,5, Du Xiang3(), Kai Zhang1,2(), Junyong Wang1,2()
1. School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China 2. CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China 3. Frontier Institute of Chip and System, Fudan University, Shanghai 200438, China 4. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 5. College of Energy & Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
The low-dimensional light source shows promise in photonic integrated circuits. Stable layered van der Waals material that exhibits luminescence in the near-infrared optical communication waveband is an essential component in on-chip light sources. Herein, the tunable near-infrared photoluminescence (PL) of the air-stable layered titanium trisulfide (TiS3) is reported. Compared with iodine particles as a transport agent, TiS3 grown by chemical vapor transport using sulfur powder as a transport agent has fewer sulfur vacancies, which increases the luminescence intensity by an order of magnitude. The PL emission wavelength can be regulated in the near-infrared regime by thickness control. In addition, we observed an interesting anisotropic strain response of PL in layered TiS3 nanoribbon: a blue shift of PL was achieved when the uniaxial tensile strain was applied along the b-axis, while a negligible shift was observed when the strain was applied along the a-axis. Our work reveals the tunable near-infrared luminescent properties of TiS3 nanoribbons, suggesting their potential applications as near-infrared light sources in photonic integrated circuits.
Famà S. , Colace L. , Masini G. , Assanto G. , C. Luan H. . High performance germanium-on-silicon detectors for optical communications. Appl. Phys. Lett., 2002, 81(4): 586 https://doi.org/10.1063/1.1496492
Shacham A. , Bergman K. , P. Carloni L. . Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput., 2008, 57(9): 1246 https://doi.org/10.1109/TC.2008.78
4
Streshinsky M. , Ding R. , Liu Y. , Novack A. , Galland C. , E. J. Lim A. , Guo-Qiang Lo P. , Baehr-Jones T. , Hochberg M. . The road to affordable, large-scale silicon photonics. Opt. Photonics News, 2013, 24(9): 32 https://doi.org/10.1364/OPN.24.9.000032
5
Yang J. , Tang M. , Chen S. , Liu H. . From past to future: On-chip laser sources for photonic integrated circuits. Light Sci. Appl., 2023, 12(1): 16 https://doi.org/10.1038/s41377-022-01006-0
6
C. Yue W. , J. Yao P. , X. Xu L. , Ming H. . All-dielectric bowtie waveguide with deep subwavelength mode confinement. Front. Phys., 2018, 13(4): 134207 https://doi.org/10.1007/s11467-018-0803-1
7
S. Liu D. , Wu J. , Xu H. , Wang Z. . Emerging light-emitting materials for photonic integration. Adv. Mater., 2021, 33(4): 2003733 https://doi.org/10.1002/adma.202003733
8
You J. , Luo Y. , Yang J. , Zhang J. , Yin K. , Wei K. , Zheng X. , Jiang T. . Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photonics Rev., 2020, 14(12): 2000239 https://doi.org/10.1002/lpor.202000239
9
B. Qin C. , L. Liang X. , P. Han S. , F. Zhang G. , Y. Chen R. , Y. Hu J. , T. Xiao L. , T. Jia S. . Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation. Front. Phys., 2021, 16(1): 12501 https://doi.org/10.1007/s11467-020-0995-z
10
F. Mak K. , Lee C. , Hone J. , Shan J. , F. Heinz T. . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105(13): 136805 https://doi.org/10.1103/PhysRevLett.105.136805
11
S. Sundaram R. , Engel M. , Lombardo A. , Krupke R. , C. Ferrari A. , Avouris P. , Steiner M. . Electroluminescence in single layer MoS2. Nano Lett., 2013, 13(4): 1416 https://doi.org/10.1021/nl400516a
12
H. Lien D. , Z. Uddin S. , Yeh M. , Amani M. , Kim H. , W. III Ager J. , Yablonovitch E. , Javey A. . Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science, 2019, 364(6439): 468 https://doi.org/10.1126/science.aaw8053
13
Paur M. , J. Molina-Mendoza A. , Bratschitsch R. , Watanabe K. , Taniguchi T. , Mueller T. . Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat. Commun., 2019, 10(1): 1709 https://doi.org/10.1038/s41467-019-09781-y
14
Wang S. , Wang J. , Zhao W. , Giustiniano F. , Chu L. , Verzhbitskiy I. , Zhou Yong J. , Eda G. . Efficient carrier-to-exciton conversion in field emission tunnel diodes based on MIS-type van der Waals heterostack. Nano Lett., 2017, 17(8): 5156 https://doi.org/10.1021/acs.nanolett.7b02617
15
Feng J. , Li Y. , Zhang J. , Tang Y. , Sun H. , Gan L. , Z. Ning C. . Injection-free multiwavelength electroluminescence devices based on monolayer semiconductors driven by an alternating field. Sci. Adv., 2022, 8(5): eabl5134 https://doi.org/10.1126/sciadv.abl5134
16
H. Lien D. , Amani M. , B. Desai S. , H. Ahn G. , Han K. , H. He J. , W. III Ager J. , C. Wu M. , Javey A. . Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nat. Commun., 2018, 9(1): 1229 https://doi.org/10.1038/s41467-018-03218-8
17
Gupta N. , Kim H. , S. Azar N. , Z. Uddin S. , H. Lien D. , B. Crozier K. , Javey A. . Bright mid-wave infrared resonant-cavity light-emitting diodes based on black phosphorus. Nano Lett., 2022, 22(3): 1294 https://doi.org/10.1021/acs.nanolett.1c04557
18
Higashitarumizu N. , Tajima S. , Kim J. , Cai M. , Javey A. . Long operating lifetime mid-infrared LEDs based on black phosphorus. Nat. Commun., 2023, 14(1): 4845 https://doi.org/10.1038/s41467-023-40602-5
19
Wang Y. , Yu Q. , Li J. , Wang J. , Zhang K. . Insight into the growth mechanism of black phosphorus. Front. Phys., 2023, 18(4): 43603 https://doi.org/10.1007/s11467-023-1265-7
20
Ruppert C. , Aslan B. , F. Heinz T. . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231 https://doi.org/10.1021/nl502557g
Yang J. , Xu R. , Pei J. , W. Myint Y. , Wang F. , Wang Z. , Zhang S. , Yu Z. , Lu Y. . Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl., 2015, 4(7): e312 https://doi.org/10.1038/lsa.2015.85
23
Shu H. . Highly-anisotropic carrier transport and optical properties of two-dimensional titanium trisulfide. J. Mater. Sci., 2022, 57(5): 3486 https://doi.org/10.1007/s10853-022-06884-8
24
Lian Z. , Jiang Z. , Wang T. , Blei M. , Qin Y. , Washington M. , M. Lu T. , Tongay S. , Zhang S. , F. Shi S. . Anisotropic band structure of TiS3 nanoribbon revealed by polarized photocurrent spectroscopy. Appl. Phys. Lett., 2020, 117(7): 073101 https://doi.org/10.1063/5.0019828
25
Dai J. , C. Zeng X. . Titanium trisulfide monolayer: Theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew. Chem. Int. Ed., 2015, 54(26): 7572 https://doi.org/10.1002/anie.201502107
26
Jin Y. , Li X. , Yang J. . Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): A new platform for nano-electronics and optics. Phys. Chem. Chem. Phys., 2015, 17(28): 18665 https://doi.org/10.1039/C5CP02813B
27
J. Ferrer I. , R. Ares J. , M. Clamagirand J. , Barawi M. , Sánchez C. . Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Films, 2013, 535: 398 https://doi.org/10.1016/j.tsf.2012.10.033
28
O. Island J. , Barawi M. , Biele R. , Almazán A. , M. Clamagirand J. , R. Ares J. , Sánchez C. , S. J. van der Zant H. , V. Álvarez J. , D’Agosta R. , J. Ferrer I. , Castellanos-Gomez A. . TiS3 transistors with tailored morphology and electrical properties. Adv. Mater., 2015, 27(16): 2595 https://doi.org/10.1002/adma.201405632
29
Khatibi A. , H. Godiksen R. , B. Basuvalingam S. , Pellegrino D. , A. Bol A. , Shokri B. , G. Curto A. . Anisotropic infrared light emission from quasi-1D layered TiS3. 2D Mater., 2019, 7(1): 015022 https://doi.org/10.1088/2053-1583/ab57ef
30
Tian Z. , Guo X. , Wang D. , Sun D. , Zhang S. , Bu K. , Zhao W. , Huang F. . Enhanced charge carrier lifetime of TiS3 photoanode by introduction of S22− vacancies for efficient photoelectrochemical hydrogen evolution. Adv. Funct. Mater., 2020, 30(21): 2001286 https://doi.org/10.1002/adfm.202001286
31
Wei Y. , Zhou Z. , Long R. . Defects slow down nonradiative electron–hole recombination in TiS3 nanoribbons: A time-domain ab initio study. J. Phys. Chem. Lett., 2017, 8(18): 4522 https://doi.org/10.1021/acs.jpclett.7b02099
32
Wu K. , Torun E. , Sahin H. , Chen B. , Fan X. , Pant A. , Parsons Wright D. , Aoki T. , M. Peeters F. , Soignard E. , Tongay S. . Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3. Nat. Commun., 2016, 7(1): 12952 https://doi.org/10.1038/ncomms12952
33
Endo K.Ihara H.Watanabe K.I. Gonda S., XPS study of one-dimensional compounds: TiS3, J. Solid State Chem. 44(2), 268 (1982)
34
S. Shkvarin A. , M. Yarmoshenko Y. , V. Yablonskikh M. , I. Merentsov A. , N. Titov A. . An X-ray spectrscopy study of the electronic structure of TiS3. J. Struct. Chem., 2014, 55(6): 1039 https://doi.org/10.1134/S0022476614060067
35
E. Fleet M. , L. Harmer S. , Liu X. , W. Nesbitt H. . Polarized X-ray absorption spectroscopy and XPS of TiS3: S K- and Ti L-edge XANES and S and Ti 2p XPS. Surf. Sci., 2005, 584(2−3): 133 https://doi.org/10.1016/j.susc.2005.03.048
36
L. Li X. , P. Han W. , B. Wu J. , F. Qiao X. , Zhang J. , H. Tan P. . Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater., 2017, 27(19): 1604468 https://doi.org/10.1002/adfm.201604468
37
J. Molina-Mendoza A. , Barawi M. , Biele R. , Flores E. , R. Ares J. , Sánchez C. , Rubio-Bollinger G. , Agraït N. , D’Agosta R. , J. Ferrer I. , Castellanos-Gomez A. . Electronic bandgap and exciton binding energy of layered semiconductor TiS3. Adv. Electron. Mater., 2015, 1(9): 1500126 https://doi.org/10.1002/aelm.201500126
38
H. Firouzkhani A. , Vaez-Zadeh M. , Jamnezhad H. , Berahman M. . Electronic and optical properties of monolayer TiS3: DFT calculation. J. Optoelectron. Adv. Mater., 2020, 22(11−12): 623
39
Kang J. , W. Wang L. . Robust band gap of TiS3 nanofilms. Phys. Chem. Chem. Phys., 2016, 18(22): 14805 https://doi.org/10.1039/C6CP01125J
40
Chen C. , Chen F. , Chen X. , Deng B. , Eng B. , Jung D. , Guo Q. , Yuan S. , Watanabe K. , Taniguchi T. , L. Lee M. , Xia F. . Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett., 2019, 19(3): 1488 https://doi.org/10.1021/acs.nanolett.8b04041
41
Li Y. , Hu Z. , Lin S. , K. Lai S. , Ji W. , P. Lau S. . Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater., 2017, 27(19): 1600986 https://doi.org/10.1002/adfm.201600986
42
K. Qin J. , L. Sun H. , Su T. , Zhao W. , Zhen L. , Chai Y. , Y. Xu C. . Strain engineering of quasi-1D layered TiS3 nanosheets toward giant anisotropic Raman and piezoresistance responses. Appl. Phys. Lett., 2021, 119(20): 201903 https://doi.org/10.1063/5.0069569