Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (4): 42203   https://doi.org/10.1007/s11467-023-1380-5
  本期目录
Effect of ambient pressures on laser-induced breakdown spectroscopy signals
Kaifan Zhang1, Weiran Song1, Zongyu Hou1,2, Zhe Wang1,2()
1. State Key Laboratory of Power System Operation and Control, Tsinghua-Rio Tinto Joint Research Centre for Resources, Energy and Sustainable Development, International Joint Laboratory on Low Carbon Clean Energy Innovation, Institute for Carbon Neutrality, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
2. Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
 全文: PDF(9777 KB)   HTML
Abstract

Laser-induced breakdown spectroscopy (LIBS) is regarded as the future superstar for analytical chemistry and widely applied in various fields. Improving the quality of LIBS signal is fundamental to achieving accurate quantification and large-scale commercialization of LIBS. To propose control methods that improve LIBS signal quality, it is essential to have a comprehensive understanding of the influence of key parameters, such as ambient gas pressure, temperature, and sample temperature on LIBS signals. To date, extensive research has been carried out. However, different researchers often yield significantly different experimental results for LIBS, preventing the formation of consistent conclusions. This greatly prevents the understanding of influencing laws of key parameters and the improvement of LIBS quantitative performance. Taking ambient gas pressure as an example, this paper compares the effects of ambient gas pressure under different optimization conditions, reveals the influence of spatiotemporal window caused by inherent characteristics of LIBS signal sources, i.e., intense temporal changes and spatial non-uniformity of laser-induced plasmas, on the impact patterns of key parameters. From the perspective of plasma spatiotemporal evolution, the paper elucidates the influence patterns of ambient gas pressure on LIBS signals, clarifying seemingly contradictory research results in the literature.

Key wordslaser-induced breakdown spectroscopy    spatiotemporal window    pressure condition    signal uncertainty    plasma modulation
收稿日期: 2023-09-25      出版日期: 2024-01-30
Corresponding Author(s): Zhe Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(4): 42203.
Kaifan Zhang, Weiran Song, Zongyu Hou, Zhe Wang. Effect of ambient pressures on laser-induced breakdown spectroscopy signals. Front. Phys. , 2024, 19(4): 42203.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1380-5
https://academic.hep.com.cn/fop/CN/Y2024/V19/I4/42203
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
1 Wang Z. , B. Yuan T. , Y. Hou Z. , D. Zhou W. , D. Lu J. , B. Ding H. , Y. Zeng X. . Laser-induced breakdown spectroscopy in China. Front. Phys., 2014, 9(4): 419
https://doi.org/10.1007/s11467-013-0410-0
2 D. Winefordner J. , B. Gornushkin I. , Correll T. , Gibb E. , W. Smith B. , Omenetto N. . Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser-induced breakdown spectrometry, LIBS, a future super star. J. Anal. At. Spectrom., 2004, 19(9): 1061
https://doi.org/10.1039/b400355c
3 Sheta S. , S. Afgan M. , Hou Z. , C. Yao S. , Zhang L. , Li Z. , Wang Z. . Coal analysis by laser-induced breakdown spectroscopy: A tutorial review. J. Anal. At. Spectrom., 2019, 34(6): 1047
https://doi.org/10.1039/C9JA00016J
4 Ji J. , Song W. , Hou Z. , Li L. , Yu X. , Wang Z. . Raw signal improvement using beam shaping plasma modulation for uranium detection in ore using laser-induced breakdown spectroscopy. Anal. Chim. Acta, 2022, 1235: 340551
https://doi.org/10.1016/j.aca.2022.340551
5 A. Cremers D., Laser-Induced Breakdown Spectroscopy: Theory and Applications, Berlin, Heidelberg: Springer, 2014
6 O. Cáceres J.Y. S. de los Terreros J., A real-world approach to identifying animal bones and Lower Pleistocene fossils by laser induced breakdown spectroscopy, Talanta 235, 122780 (2021)
7 Limbeck A. , Brunnbauer L. , Lohninger H. , Pořízka P. , Modlitbová P. , Kaiser J. , Janovszky P. , Kéri A. , Galbács G. . Methodology and applications of elemental mapping by laser-induced breakdown spectroscopy. Anal. Chim. Acta, 2021, 1147: 72
https://doi.org/10.1016/j.aca.2020.12.054
8 Hou Z. , S. Afgan M. , Sheta S. , Liu J. , Wang Z. . Plasma modulation using beam shaping to improve signal quality for laser-induced breakdown spectroscopy. J. Anal. At. Spectrom., 2020, 35(8): 1671
https://doi.org/10.1039/D0JA00195C
9 Amal K. , H. Elnaby S. , Palleschi V. , Salvetti A. , A. Harith M. . Comparison between single- and double-pulse LIBS at different air pressures on silicon target. Appl. Phys. B, 2006, 83(4): 651
https://doi.org/10.1007/s00340-006-2259-1
10 Gautier C. , Fichet P. , Menut D. , Dubessy J. . Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials. Spectrochim. Acta B At. Spectrosc., 2006, 61(2): 210
https://doi.org/10.1016/j.sab.2006.01.005
11 Wang Z. , Hou Z. , Lui S. , Jiang D. , Liu J. , Li Z. . Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal. Opt. Express, 2012, 20(S6): A1011
https://doi.org/10.1364/OE.20.0A1011
12 Hou Z. , Wang Z. , Liu J. , Ni W. , Li Z. . Signal quality improvement using cylindrical confinement for laser-induced breakdown spectroscopy. Opt. Express, 2013, 21(13): 15974
https://doi.org/10.1364/OE.21.015974
13 Yi R. , Yang X. , Lin F. , Ren S. . Improving the spectral qualities of major elements in soil by controlling the ambient pressure in time-resolved laser-induced breakdown spectroscopy. Appl. Opt., 2019, 58(32): 8824
https://doi.org/10.1364/ao.58.008824
14 Yu J. , Hou Z. , Ma Y. , Li T. , Fu Y. , Wang Y. , Li Z. , Wang Z. . Improvement of laser induced breakdown spectroscopy signal using gas mixture. Spectrochim. Acta B At. Spectrosc., 2020, 174: 105992
https://doi.org/10.1016/j.sab.2020.105992
15 T. Fu Y. , L. Gu W. , Y. Hou Z. , A. Muhammed S. , Q. Li T. , Wang Y. , Wang Z. . Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy. Front. Phys., 2021, 16(2): 22502
https://doi.org/10.1007/s11467-020-1006-0
16 Wu D. , Sun L. , Liu J. , Lyu Y. , Wu H. , Yuan S. , Hai R. , Li C. , Feng C. , Zhao D. , Ding H. . Parameter optimization of the spectral emission of laser-induced tungsten plasma for tokamak wall diagnosis at different pressures. J. Anal. At. Spectrom., 2021, 36(6): 1159
https://doi.org/10.1039/D1JA00009H
17 Farid N. , Bashir S. , Mahmood K. . Effect of ambient gas conditions on laser-induced copper plasma and surface morphology. Phys. Scr., 2012, 85(1): 015702
https://doi.org/10.1088/0031-8949/85/01/015702
18 Farid N. , S. Harilal S. , Ding H. , Hassanein A. . Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures. J. Appl. Phys., 2014, 115(3): 033107
https://doi.org/10.1063/1.4862167
19 Haider Z. , B. Munajat Y. , Kamarulzaman R. , Shahami N. . Comparison of single pulse and double simultaneous pulse laser-induced breakdown spectroscopy. Anal. Lett., 2015, 48(2): 308
https://doi.org/10.1080/00032719.2014.940532
20 Yuan H. , B. Gojani A. , B. Gornushkin I. , Wang X. , Liu D. , Rong M. . Dynamics of laser-induced plasma splitting. Opt. Lasers Eng., 2020, 124: 105832
https://doi.org/10.1016/j.optlaseng.2019.105832
21 Wang Z. , S. Afgan M. , Gu W. , Song Y. , Wang Y. , Hou Z. , Song W. , Li Z. . Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. Trends Analyt. Chem., 2021, 143: 116385
https://doi.org/10.1016/j.trac.2021.116385
22 J. Effenberger A. , R. Scott J. . Effect of atmospheric conditions on LIBS spectra. Sensors, 2010, 10: 4907
https://doi.org/10.3390/s100504907
23 Burger M. , Pantić D. , Nikolić Z. , Djeniže S. . Shielding effects in the laser-generated copper plasma under reduced pressures of He atmosphere. J. Quant. Spectrosc. Radiat. Transf., 2016, 170: 19
https://doi.org/10.1016/j.jqsrt.2015.10.015
24 R. Scott J.J. Effenberger A.J. Hatch J., Influence of Atmospheric Pressure and Composition on LIBS, in: Laser-Induced Breakdown Spectroscopy: Theory and Applications, Berlin, Heidelberg: Springer, 2014
25 S. Cowpe J. , D. Pilkington R. , S. Astin J. , E. Hill A. . The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology. J. Phys. D, 2009, 42(16): 165202
https://doi.org/10.1088/0022-3727/42/16/165202
26 Li T. , Sheta S. , Hou Z. , Dong J. , Wang Z. . Impacts of a collection system on laser-induced breakdown spectroscopy signal detection. Appl. Opt., 2018, 57(21): 6120
https://doi.org/10.1364/AO.57.006120
27 Bashir S. , Farid N. , Mahmood K. , Shahid Rafique M. . Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd. Appl. Phys. A, 2012, 107(1): 203
https://doi.org/10.1007/s00339-011-6730-4
28 Noll R., Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, Berlin, Heidelberg: Springer, 2012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed