Spatiotemporal nonlinear dynamics in multimode fiber laser based on carbon nanotubes
Jingxuan Sun1, Yachen Wang1, Congyu Zhang1, Lijun Xu1, Bo Fu1,2()
1. Key Laboratory of Precision Opto-Mechatronics Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China 2. Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing 100191, China
We investigated 1-μm multimode fiber laser based on carbon nanotubes, where multiple typical pulse states were observed, including Q-switched, Q-switched mode-locked, and spatiotemporal mode-locked pulses. Particularly, stable spatiotemporal mode-locking was realized with a low threshold, where the pulse duration was 37 ps and the wavelength was centred at 1060.5 nm. Moreover, both the high signal to noise and long-term operation stability proved the reliability of the mode-locked laser. Furthermore, the evolution of the spatiotemporal mode-locked pulses in the cavity was also simulated and discussed. This work exhibits the flexible outputs of spatiotemporal phenomena in multimode lasers based on nanomaterials, providing more possibilities for the development of high-dimensional nonlinear dynamics.
G. Wright L. , N. Christodoulides D. , W. Wise F. . Spatiotemporal mode-locking in multimode fiber lasers. Science, 2017, 358(6359): 94 https://doi.org/10.1126/science.aao0831
2
G. Wright L. , Sidorenko P. , Pourbeyram H. , M. Ziegler Z. , Isichenko A. , A. Malomed B. , R. Menyuk C. , N. Christodoulides D. , W. Wise F. . Mechanisms of spatiotemporal mode-locking. Nat. Phys., 2020, 16(5): 565 https://doi.org/10.1038/s41567-020-0784-1
3
Krupa K. , Tonello A. , Barthélémy A. , Mansuryan T. , Couderc V. , Millot G. , Grelu P. , Modotto D. , A. Babin S. , Wabnitz S. . Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photonics, 2019, 4(11): 110901 https://doi.org/10.1063/1.5119434
4
Ding Y. , Xiao X. , Liu K. , Fan S. , Zhang X. , Yang C. . Spatiotemporal mode-locking in lasers with large modal dispersion. Phys. Rev. Lett., 2021, 126(9): 093901 https://doi.org/10.1103/PhysRevLett.126.093901
5
Gao C. , Cao B. , Ding Y. , Xiao X. , Yang D. , Fei H. , Yang C. , Bao C. . All-step-index-fiber spatiotemporally mode-locked laser. Optica, 2023, 10(3): 356 https://doi.org/10.1364/OPTICA.479206
6
Teğin U. , Kakkava E. , Rahmani B. , Psaltis D. , Moser C. . Spatiotemporal self-similar fiber laser. Optica, 2019, 6(11): 1412 https://doi.org/10.1364/OPTICA.6.001412
7
Long J. , Gao Y. , Lin W. , Wu J. , Lin X. , Hong W. , Cui H. , Luo Z. , Xu W. , Luo A. . Switchable and spacing tunable dual-wavelength spatiotemporal mode-locked fiber laser. Opt. Lett., 2021, 46(3): 588 https://doi.org/10.1364/OL.412086
8
Fang W. , Ma X. , Zhou Y. , Zhang W. , Chen X. , Huang S. , Liao M. , Ohishiand Y. , Gao W. . Transverse mode switchable fiber laser with a multimodal interference-based beam shaper. Opt. Lett., 2023, 48(1): 53 https://doi.org/10.1364/OL.478033
9
Fu B. , Shang C. , Liu H. , Fan S. , Zhao K. , Zhang Y. , Wageh S. , Al-Ghamdi A. , Wang X. , Xu L. , Xiao X. , Zhang H. . Recent advances and future outlook in mode-locked lasers with multimode fibers. Appl. Phys. Rev., 2023, 10(4): 041305 https://doi.org/10.1063/5.0129662
Teğin U. , Ortaç B. . All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber. Opt. Lett., 2018, 43(7): 1611 https://doi.org/10.1364/OL.43.001611
12
Teğin U. , Rahmani B. , Kakkava E. , Psaltis D. , Moser C. . All-fiber spatiotemporally mode-locked laser with multimode fiber-based filtering. Opt. Express, 2020, 28(16): 23433 https://doi.org/10.1364/OE.399668
13
Xie S. , Jin L. , Zhang H. , Li X. , Zhang X. , Xu Y. , Ma X. . All-fiber high-power spatiotemporal mode-locked laser based on multimode interference filtering. Opt. Express, 2022, 30(2): 2909 https://doi.org/10.1364/OE.443505
14
Lin X. , Gao Y. , Long J. , Wu J. , Hong W. , Cui H. , Luo Z. , Xu W. , Luo A. . All few-mode fiber spatiotemporal mode-locked figure-eight laser. J. Lightwave Technol., 2021, 39(17): 5611 https://doi.org/10.1109/JLT.2021.3087784
15
Wu J. , Liu G. , Gao Y. , Lin X. , Cui H. , Luo Z. , Xu W. , E. Likhachev M. , S. Aleshkina S. , M. Mashinsky V. , V. Yashkov M. , P. Luo A. . Switchable femtosecond and picosecond spatiotemporal mode-locked fiber laser based on NALM and multimode interference filtering effects. Opt. Laser Technol., 2022, 155: 108414 https://doi.org/10.1016/j.optlastec.2022.108414
16
Cao B. , Gao C. , Ding Y. , Xiao X. , Yang C. , Bao C. . Self-starting spatiotemporal mode-locking using Mamyshev regenerators. Opt. Lett., 2022, 47(17): 4584 https://doi.org/10.1364/OL.469291
17
Huang L. , Zhang Y. , Liu X. . Dynamics of carbon nanotube-based mode-locking fiber lasers. Nanophotonics, 2020, 9(9): 2731 https://doi.org/10.1515/nanoph-2020-0269
18
Fu B. , Hua Y. , Xiao X. , Zhu H. , Sun Z. , Yang C. . Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm. IEEE J. Sel. Top. Quantum Electron., 2014, 20(5): 411 https://doi.org/10.1109/JSTQE.2014.2302361
19
Li Y. , Gao B. , Han Y. , Chen B. , Huo J. . Optoelectronic characteristics and application of black phosphorus and its analogs. Front. Phys., 2021, 16(4): 43301 https://doi.org/10.1007/s11467-021-1052-2
20
Fu B. , Sun J. , Wang C. , Shang C. , Xu L. , Li J. , Zhang H. . MXenes: Synthesis, optical properties, and applications in ultrafast photonics. Small, 2021, 17(11): 2006054 https://doi.org/10.1002/smll.202006054
21
Zhao X. , Jin H. , Liu J. , Chao J. , Liu T. , Zhang H. , Wang G. , Lyu W. , Wageh S. , A. Al-Hartomy O. , G. Al-Sehemi A. , Fu B. , Zhang H. . Integration and applications of nanomaterials for ultra-fast photonics. Laser Photonics Rev., 2022, 16(11): 2200386 https://doi.org/10.1002/lpor.202200386
22
Li X. , Guo Y. , Ren Y. , Peng J. , Liu J. , Wang C. , Zhang H. . Narrow-bandgap materials for optoelectronics applications. Front. Phys., 2022, 17(1): 13304 https://doi.org/10.1007/s11467-021-1055-z
23
Zhao T. , Liu G. , Dai L. , Zhao B. , Cui H. , Mou C. , Luo Z. , Xu W. , Luo A. . Narrow bandwidth spatiotemporal mode-locked Yb-doped fiber laser. Opt. Lett., 2022, 47(15): 3848 https://doi.org/10.1364/OL.465533
24
S. Mohammed W. , W. Smith P. , Gu X. . All-fiber multimode interference bandpass filter. Opt. Lett., 2006, 31(17): 2547 https://doi.org/10.1364/OL.31.002547
25
Mafi A. , Hofmann P. , J. Salvin C. , Schülzgen A. . Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber. Opt. Lett., 2011, 36(18): 3596 https://doi.org/10.1364/OL.36.003596
26
Garmire E. . Resonant optical nonlinearities in semiconductors. IEEE J. Sel. Top. Quantum Electron., 2000, 6(6): 1094 https://doi.org/10.1109/2944.902158
27
Lee J. , Koo J. , Debnath P. , Song Y. , Lee J. . A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber. Laser Phys. Lett., 2013, 10(3): 035103 https://doi.org/10.1088/1612-2011/10/3/035103
28
H. Lin K. , J. Kang J. , H. Wu H. , K. Lee C. , R. Lin G. . Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber. Opt. Express, 2009, 17(6): 4806 https://doi.org/10.1364/OE.17.004806
29
Sun J. , Wang G. , Chao J. , Wang X. , Yang H. , Fu B. . Buildup of multiple spatiotemporal nonlinear dynamics in an all-fiber multimode laser. Opt. Lett., 2023, 48(22): 6019 https://doi.org/10.1364/OL.505331
30
Poletti F. , Horak P. . Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B, 2008, 25(10): 1645 https://doi.org/10.1364/JOSAB.25.001645
31
G. Wright L. , H. Renninger W. , N. Christodoulides D. , W. Wise F. . Spatiotemporal dynamics of multimode optical solitons. Opt. Express, 2015, 23(3): 3492 https://doi.org/10.1364/OE.23.003492
32
Kataura H. , Kumazawa Y. , Maniwa Y. , Umezu I. , Suzuki S. , Ohtsuka Y. , Achiba Y. . Optical properties of single-wall carbon nanotubes. Synth. Met., 1999, 103(1-3): 2555 https://doi.org/10.1016/S0379-6779(98)00278-1
33
Yang H. , Fu B. , Li D. , Tian Y. , Chen Y. , Mattila M. , Yong Z. , Li R. , Hassanien A. , Yang C. , Tittonen I. , Ren Z. , Bai J. , Li Q. , I. Kauppinen E. , Lipsanen H. , Sun Z. . Broadband laser polarization control with aligned carbon nanotubes. Nanoscale, 2015, 7(25): 11199 https://doi.org/10.1039/C5NR01904D