Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (5): 51204   https://doi.org/10.1007/s11467-024-1403-x
  本期目录
Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems
Arthur Vesperini1,2,3, Ghofrane Bel-Hadj-Aissa1,2,3, Lorenzo Capra1, Roberto Franzosi1,2,3()
1. DSFTA, University of Siena, Via Roma 56, 53100 Siena, Italy
2. QSTAR & CNR - Istituto Nazionale di Ottica, Largo Enrico Fermi 2, I-50125 Firenze, Italy
3. INFN Sezione di Perugia, I-06123 Perugia, Italy
 全文: PDF(5083 KB)   HTML
Abstract

We show that the manifold of quantum states is endowed with a rich and nontrivial geometric structure. We derive the Fubini−Study metric of the projective Hilbert space of a multi-qubit quantum system, endowing it with a Riemannian metric structure, and investigate its deep link with the entanglement of the states of this space. As a measure, we adopt the entanglement distance E preliminary proposed in Phys. Rev. A 101, 042129 (2020). Our analysis shows that entanglement has a geometric interpretation: E(|ψ) is the minimum value of the sum of the squared distances between |ψ and its conjugate states, namely the states vμσμ|ψ, where vμ are unit vectors and μ runs on the number of parties. Within the proposed geometric approach, we derive a general method to determine when two states are not the same state up to the action of local unitary operators. Furthermore, we prove that the entanglement distance, along with its convex roof expansion to mixed states, fulfils the three conditions required for an entanglement measure, that is: i) E(|ψ)=0 iff |ψ is fully separable; ii) E is invariant under local unitary transformations; iii) E does not increase under local operation and classical communications. Two different proofs are provided for this latter property. We also show that in the case of two qubits pure states, the entanglement distance for a state |ψ coincides with two times the square of the concurrence of this state. We propose a generalization of the entanglement distance to continuous variable systems. Finally, we apply the proposed geometric approach to the study of the entanglement magnitude and the equivalence classes properties, of three families of states linked to the Greenberger−Horne−Zeilinger states, the Briegel Raussendorf states and the W states. As an example of application for the case of a system with continuous variables, we have considered a system of two coupled Glauber coherent states.

Key wordsentanglements    quantum information    entanglement measure
收稿日期: 2023-09-22      出版日期: 2024-04-15
Corresponding Author(s): Roberto Franzosi   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(5): 51204.
Arthur Vesperini, Ghofrane Bel-Hadj-Aissa, Lorenzo Capra, Roberto Franzosi. Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems. Front. Phys. , 2024, 19(5): 51204.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-024-1403-x
https://academic.hep.com.cn/fop/CN/Y2024/V19/I5/51204
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Cocchiarella D. , Scali S. , Ribisi S. , Nardi B. , Bel-Hadj-Aissa G. , Franzosi R. . Entanglement distance for arbitrary M-qudit hybrid systems. Phys. Rev. A, 2020, 101(4): 042129
https://doi.org/10.1103/PhysRevA.101.042129
2 Gühne O. , Toth G. . Entanglement detection. Phys. Rep., 2009, 474(1−6): 1
https://doi.org/10.1016/j.physrep.2009.02.004
3 Nourmandipour A. , Vafafard A. , Mortezapour A. , Franzosi R. . Entanglement protection of classically driven qubits in a lossy cavity. Sci. Rep., 2021, 11(1): 16259
https://doi.org/10.1038/s41598-021-95623-1
4 Vafafard A. , Nourmandipour A. , Franzosi R. . Multipartite stationary entanglement generation in the presence of dipole−dipole interaction in an optical cavity. Phys. Rev. A, 2022, 105(5): 052439
https://doi.org/10.1103/PhysRevA.105.052439
5 Sperling J. , A. Walmsley I. . Entanglement in macroscopic systems. Phys. Rev. A, 2017, 95(6): 062116
https://doi.org/10.1103/PhysRevA.95.062116
6 Giovannetti V. , Mancini S. , Vitali D. , Tombesi P. . Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A, 2003, 67(2): 022320
https://doi.org/10.1103/PhysRevA.67.022320
7 Vesperini A. , Bel-Hadj-Aissa G. , Franzosi R. . Entanglement and quantum correlation measures for quantum multipartite mixed states. Sci. Rep., 2023, 13(1): 2852
https://doi.org/10.1038/s41598-023-29438-7
8 Vesperini A. , Franzosi R. . Entanglement, quantum correlators, and connectivity in graph states. Adv. Quantum Technol., 2024, 7(2): 2300264
https://doi.org/10.1002/qute.202300264
9 Horodecki R. , Horodecki P. , Horodecki M. , Horodecki K. . Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
https://doi.org/10.1103/RevModPhys.81.865
10 Popescu S. , Rohrlich D. . Thermodynamics and the measure of entanglement. Phys. Rev. A, 1997, 56(5): R3319
https://doi.org/10.1103/PhysRevA.56.R3319
11 K. Wootters W. . Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 1998, 80(10): 2245
https://doi.org/10.1103/PhysRevLett.80.2245
12 H. Bennett C. , P. DiVincenzo D. , A. Smolin J. , K. Wootters W. . Mixed-state entanglement and quantum error correction. Phys. Rev. A, 1996, 54(5): 3824
https://doi.org/10.1103/PhysRevA.54.3824
13 H. Bennett C. , Brassard G. , Popescu S. , Schumacher B. , A. Smolin J. , K. Wootters W. . Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722
https://doi.org/10.1103/PhysRevLett.76.722
14 Horodecki M. , Horodecki P. , Horodecki R. . Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett., 1998, 80(24): 5239
https://doi.org/10.1103/PhysRevLett.80.5239
15 Vedral V. , B. Plenio M. , A. Rippin M. , L. Knight P. . Quantifying entanglement. Phys. Rev. Lett., 1997, 78(12): 2275
https://doi.org/10.1103/PhysRevLett.78.2275
16 Adesso G. , R. Bromley T. , Cianciaruso M. . Measures and applications of quantum correlations. J. Phys. A Math. Theor., 2016, 49(47): 473001
https://doi.org/10.1088/1751-8113/49/47/473001
17 Dür W. , Vidal G. , I. Cirac J. . Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
https://doi.org/10.1103/PhysRevA.62.062314
18 J. Briegel H. , Raussendorf R. . Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 2001, 86(5): 910
https://doi.org/10.1103/PhysRevLett.86.910
19 Eisert J. , J. Briegel H. . Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A, 2001, 64(2): 022306
https://doi.org/10.1103/PhysRevA.64.022306
20 Roszak K. . Measure of qubit-environment entanglement for pure dephasing evolutions. Phys. Rev. Res., 2020, 2(4): 043062
https://doi.org/10.1103/PhysRevResearch.2.043062
21 Coffman V. , Kundu J. , K. Wootters W. . Distributed entanglement. Phys. Rev. A, 2000, 61(5): 052306
https://doi.org/10.1103/PhysRevA.61.052306
22 R. R. Carvalho A. , Mintert F. , Buchleitner A. . Decoherence and multipartite entanglement. Phys. Rev. Lett., 2004, 93(23): 230501
https://doi.org/10.1103/PhysRevLett.93.230501
23 L. Braunstein S. , M. Caves C. . Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 1994, 72(22): 3439
https://doi.org/10.1103/PhysRevLett.72.3439
24 M. Frydryszak A. , I. Samar M. , M. Tkachuk V. . Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems. Eur. Phys. J. D, 2017, 71(9): 233
https://doi.org/10.1140/epjd/e2017-70752-3
25 Pezzé L. , Smerzi A. . Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett., 2009, 102(10): 100401
https://doi.org/10.1103/PhysRevLett.102.100401
26 Hyllus P. , Laskowski W. , Krischek R. , Schwemmer C. , Wieczorek W. , Weinfurter H. , Pezzé L. , Smerzi A. . Fisher information and multiparticle entanglement. Phys. Rev. A, 2012, 85(2): 022321
https://doi.org/10.1103/PhysRevA.85.022321
27 Scali S. , Franzosi R. . Entanglement estimation in non-optimal qubit states. Ann. Phys., 2019, 411: 167995
https://doi.org/10.1016/j.aop.2019.167995
28 P. Provost J. , Vallee G. . Riemannian structure on manifolds of quantum states. Commun. Math. Phys., 1980, 76(3): 289
https://doi.org/10.1007/BF02193559
29 Gibbons G. . Typical states and density matrices. J. Geom. Phys., 1992, 8(1−4): 147
https://doi.org/10.1016/0393-0440(92)90046-4
30 C. Brody D. , P. Hughston L. . Geometric quantum mechanics. J. Geom. Phys., 2001, 38(1): 19
https://doi.org/10.1016/S0393-0440(00)00052-8
31 Vidal G. . Entanglement monotones. J. Mod. Opt., 2000, 47(2−3): 355
https://doi.org/10.1080/09500340008244048
32 M. Greenberger D.A. Horne M.Zeilinger A., Going beyond Bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos, Springer Netherlands, Dordrecht, 1989, pp 69–72
33 Vesperini A. . Correlations and projective measurements in maximally entangled multipartite states. Ann. Phys., 2023, 457: 169406
https://doi.org/10.1016/j.aop.2023.169406
34 Note that the other formula, proposed in Ref. [7] as a generalization of the ED to mixed state, in fact reduces to Eq. (31), and is hence also an entanglement monotone. The supplementary minimization process in the former serves only as a trick, which sometimes allow to overcome the difficulty of the usual minimization over all possible realizations {pj, ψj} of ρ as mixture of pure states.
35 K. Wootters W. . Entanglement of formation and concurrence. Quantum Inf. Comput., 2001, 1(1): 27
https://doi.org/10.26421/QIC1.1-3
36 Wu S. , Zhang Y. . Multipartite pure-state entanglement and the generalized Greenberger−Horne−Zeilinger states. Phys. Rev. A, 2000, 63(1): 012308
https://doi.org/10.1103/PhysRevA.63.012308
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed