Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems
Arthur Vesperini1,2,3, Ghofrane Bel-Hadj-Aissa1,2,3, Lorenzo Capra1, Roberto Franzosi1,2,3()
1. DSFTA, University of Siena, Via Roma 56, 53100 Siena, Italy 2. QSTAR & CNR - Istituto Nazionale di Ottica, Largo Enrico Fermi 2, I-50125 Firenze, Italy 3. INFN Sezione di Perugia, I-06123 Perugia, Italy
We show that the manifold of quantum states is endowed with a rich and nontrivial geometric structure. We derive the Fubini−Study metric of the projective Hilbert space of a multi-qubit quantum system, endowing it with a Riemannian metric structure, and investigate its deep link with the entanglement of the states of this space. As a measure, we adopt the entanglement distanceE preliminary proposed in Phys. Rev. A 101, 042129 (2020). Our analysis shows that entanglement has a geometric interpretation: is the minimum value of the sum of the squared distances between and its conjugate states, namely the states , where are unit vectors and runs on the number of parties. Within the proposed geometric approach, we derive a general method to determine when two states are not the same state up to the action of local unitary operators. Furthermore, we prove that the entanglement distance, along with its convex roof expansion to mixed states, fulfils the three conditions required for an entanglement measure, that is: i) iff is fully separable; ii) E is invariant under local unitary transformations; iii) E does not increase under local operation and classical communications. Two different proofs are provided for this latter property. We also show that in the case of two qubits pure states, the entanglement distance for a state coincides with two times the square of the concurrence of this state. We propose a generalization of the entanglement distance to continuous variable systems. Finally, we apply the proposed geometric approach to the study of the entanglement magnitude and the equivalence classes properties, of three families of states linked to the Greenberger−Horne−Zeilinger states, the Briegel Raussendorf states and the W states. As an example of application for the case of a system with continuous variables, we have considered a system of two coupled Glauber coherent states.
. [J]. Frontiers of Physics, 2024, 19(5): 51204.
Arthur Vesperini, Ghofrane Bel-Hadj-Aissa, Lorenzo Capra, Roberto Franzosi. Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems. Front. Phys. , 2024, 19(5): 51204.
Cocchiarella D. , Scali S. , Ribisi S. , Nardi B. , Bel-Hadj-Aissa G. , Franzosi R. . Entanglement distance for arbitrary M-qudit hybrid systems. Phys. Rev. A, 2020, 101(4): 042129 https://doi.org/10.1103/PhysRevA.101.042129
Nourmandipour A. , Vafafard A. , Mortezapour A. , Franzosi R. . Entanglement protection of classically driven qubits in a lossy cavity. Sci. Rep., 2021, 11(1): 16259 https://doi.org/10.1038/s41598-021-95623-1
4
Vafafard A. , Nourmandipour A. , Franzosi R. . Multipartite stationary entanglement generation in the presence of dipole−dipole interaction in an optical cavity. Phys. Rev. A, 2022, 105(5): 052439 https://doi.org/10.1103/PhysRevA.105.052439
Giovannetti V. , Mancini S. , Vitali D. , Tombesi P. . Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A, 2003, 67(2): 022320 https://doi.org/10.1103/PhysRevA.67.022320
7
Vesperini A. , Bel-Hadj-Aissa G. , Franzosi R. . Entanglement and quantum correlation measures for quantum multipartite mixed states. Sci. Rep., 2023, 13(1): 2852 https://doi.org/10.1038/s41598-023-29438-7
8
Vesperini A. , Franzosi R. . Entanglement, quantum correlators, and connectivity in graph states. Adv. Quantum Technol., 2024, 7(2): 2300264 https://doi.org/10.1002/qute.202300264
H. Bennett C. , P. DiVincenzo D. , A. Smolin J. , K. Wootters W. . Mixed-state entanglement and quantum error correction. Phys. Rev. A, 1996, 54(5): 3824 https://doi.org/10.1103/PhysRevA.54.3824
13
H. Bennett C. , Brassard G. , Popescu S. , Schumacher B. , A. Smolin J. , K. Wootters W. . Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722 https://doi.org/10.1103/PhysRevLett.76.722
14
Horodecki M. , Horodecki P. , Horodecki R. . Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett., 1998, 80(24): 5239 https://doi.org/10.1103/PhysRevLett.80.5239
Adesso G. , R. Bromley T. , Cianciaruso M. . Measures and applications of quantum correlations. J. Phys. A Math. Theor., 2016, 49(47): 473001 https://doi.org/10.1088/1751-8113/49/47/473001
J. Briegel H. , Raussendorf R. . Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 2001, 86(5): 910 https://doi.org/10.1103/PhysRevLett.86.910
19
Eisert J. , J. Briegel H. . Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A, 2001, 64(2): 022306 https://doi.org/10.1103/PhysRevA.64.022306
M. Frydryszak A. , I. Samar M. , M. Tkachuk V. . Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems. Eur. Phys. J. D, 2017, 71(9): 233 https://doi.org/10.1140/epjd/e2017-70752-3
Hyllus P. , Laskowski W. , Krischek R. , Schwemmer C. , Wieczorek W. , Weinfurter H. , Pezzé L. , Smerzi A. . Fisher information and multiparticle entanglement. Phys. Rev. A, 2012, 85(2): 022321 https://doi.org/10.1103/PhysRevA.85.022321
P. Provost J. , Vallee G. . Riemannian structure on manifolds of quantum states. Commun. Math. Phys., 1980, 76(3): 289 https://doi.org/10.1007/BF02193559
M. Greenberger D.A. Horne M.Zeilinger A., Going beyond Bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos, Springer Netherlands, Dordrecht, 1989, pp 69–72
33
Vesperini A. . Correlations and projective measurements in maximally entangled multipartite states. Ann. Phys., 2023, 457: 169406 https://doi.org/10.1016/j.aop.2023.169406
34
Note that the other formula, proposed in Ref. [7] as a generalization of the ED to mixed state, in fact reduces to Eq. (31), and is hence also an entanglement monotone. The supplementary minimization process in the former serves only as a trick, which sometimes allow to overcome the difficulty of the usual minimization over all possible realizations {pj, ψj} of ρ as mixture of pure states.
Wu S. , Zhang Y. . Multipartite pure-state entanglement and the generalized Greenberger−Horne−Zeilinger states. Phys. Rev. A, 2000, 63(1): 012308 https://doi.org/10.1103/PhysRevA.63.012308