Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (3): 33210   https://doi.org/10.1007/s11467-024-1408-5
  本期目录
Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping
Qingwang Bai, Mingxiang Xu()
School of Physics, Southeast University, Nanjing 211189, China
 全文: PDF(5156 KB)   HTML
Abstract

As an intrinsic magnetic topological insulator with magnetic order and non-trivial topological structure, MnBi2Te4 is an ideal material for studying exotic topological states such as quantum anomalous Hall effect and topological axion insulating states. Here, we carry out magnetic and electrical transport measurements on (Mn1–xGex)Bi2Te4 (x = 0, 0.15, 0.30, 0.45, 0.60, and 0.75) single crystals. It is found that with increasing x, the dilution of magnetic moments gradually weakens the antiferromagnetic exchange interaction. Moreover, Ge doping reduces the critical field of ferromagnetic ordering, which may provide a possible way to implement the quantum anomalous Hall effect at lower magnetic field. Electrical transport measurements suggest that electrons are the dominant charge carriers, and the carrier density increases with the Ge doping ratio. Additionally, the Kondo effect is observed in the samples with x = 0.45, 0.60, and 0.75. Our results suggest that doping germanium is a viable way to tune the magnetic and electrical transport properties of MnBi2Te4, opening up the possibility of future applications in magnetic topological insulators.

Key wordsMnBi2Te4    intrinsic magnetic topological insulator    transition points    Kondo effect
收稿日期: 2023-11-14      出版日期: 2024-05-24
Corresponding Author(s): Mingxiang Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(3): 33210.
Qingwang Bai, Mingxiang Xu. Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping. Front. Phys. , 2024, 19(3): 33210.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-024-1408-5
https://academic.hep.com.cn/fop/CN/Y2024/V19/I3/33210
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Li R. , Wang J. , L. Qi X. , C. Zhang S. . Dynamical axion field in topological magnetic insulators. Nat. Phys., 2010, 6: 284
https://doi.org/10.1038/nphys1534
2 Wang Y. , Zhang F. , Zeng M. , Sun H. , Hao Z. , Cai Y. , Rong H. , Zhang C. , Liu C. , Ma X. , Wang L. , Guo S. , Lin J. , Liu Q. , Liu C. , Chen C. . Intrinsic magnetic topological materials. Front. Phys., 2023, 18(2): 21304
https://doi.org/10.1007/s11467-022-1250-6
3 Zhu X. , Chen Y. , Liu Z. , Han Y. , Qiao Z. . Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2023, 18(2): 23302
https://doi.org/10.1007/s11467-022-1228-4
4 Zhao W. , Cortie D. , Chen L. , Li Z. , Yue Z. , Wang X. . Quantum oscillations in iron-doped single crystals of the topological insulator Sb2Te3. Phys. Rev. B, 2019, 99(16): 165133
https://doi.org/10.1103/PhysRevB.99.165133
5 Xu Y. , Miotkowski I. , Liu C. , Tian J. , Nam H. , Alidoust N. , Hu J. , K. Shih C. , Z. Hasan M. , P. Chen Y. . Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys., 2014, 10(12): 956
https://doi.org/10.1038/nphys3140
6 Z. Chang C. , Zhang J. , Feng X. , Shen J. , Zhang Z. , Guo M. , Li K. , Ou Y. , Wei P. , L. Wang L. , Q. Ji Z. , Feng Y. , Ji S. , Chen X. , Jia J. , Dai X. , Fang Z. , C. Zhang S. , He K. , Wang Y. , Lu L. , C. Ma X. , K. Xue Q. . Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340: 167
https://doi.org/10.1126/science.1234414
7 Zhang D. , Shi M. , Zhu T. , Xing D. , Zhang H. , Wang J. . Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett., 2019, 122(20): 206401
https://doi.org/10.1103/PhysRevLett.122.206401
8 M. Otrokov M. , P. Rusinov I. , Blanco-Rey M. , Hoffmann M. , Yu. Vyazovskaya A. , V. Eremeev S. , Ernst A. , M. Echenique P. , Arnau A. , V. Chulkov E. . Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
https://doi.org/10.1103/PhysRevLett.122.107202
9 Q. Yan J.H. Liu Y.S. Parker D.Wu Y.A. Aczel A.Matsuda M.A. McGuire M.C. Sales B., A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals, Phys. Rev. Mater. 4(5), 054202 (2020)
10 Y. Chen K. , S. Wang B. , Q. Yan J. , S. Parker D. , S. Zhou J. , Uwatoko Y. , G. Cheng J. . Suppression of the antiferromagnetic metallic state in the pressurized MnBi2Te4 single crystal. Phys. Rev. Mater., 2019, 3(9): 094201
https://doi.org/10.1103/PhysRevMaterials.3.094201
11 Y. Pei C. , Y. Xia Y. , Z. Wu J. , Zhao Y. , L. Gao L. , P. Ying T. , Gao B. , N. Li N. , G. Yang W. , Z. Zhang D. , Y. Gou H. , L. Chen Y. , Hosono H. , Li G. , P. Qi Y. . Pressure-induced topological and structural phase transitions in an antiferromagnetic topological insulator. Chin. Phys. Lett., 2020, 37(6): 066401
https://doi.org/10.1088/0256-307X/37/6/066401
12 H. Li J. , Li Y. , Q. Du S. , Wang Z. , L. Gu B. , C. Zhang S. , He K. , H. Duan W. , Xu Y. . Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv., 2019, 5(6): eaaw5685
https://doi.org/10.1126/sciadv.aaw5685
13 J. Deng Y. , J. Yu Y. , Z. Shi M. , X. Guo Z. , H. Xu Z. , Wang J. , H. Chen X. , Zhang Y. . Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 2020, 367(6480): 895
https://doi.org/10.1126/science.aax8156
14 Ge J. , Z. Liu Y. , H. Li J. , Li H. , C. Luo T. , Wu Y. , Xu Y. , Wang J. . High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl. Sci. Rev., 2020, 7: 1280
15 Li Z.Li J.He K.Wan X.Duan W.Xu Y., Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials, Phys. Rev. B 102(8), 081107 (2020) (R)
16 Lai Y. , Ke L. , Yan J. , D. McDonald R. , J. McQueeney R. . Defect-driven ferrimagnetism and hidden magnetization in MnBi2Te4. Phys. Rev. B, 2021, 103(18): 184429
https://doi.org/10.1103/PhysRevB.103.184429
17 Zhu W. , Song C. , Liao L. , Zhou Z. , Bai H. , Zhou Y. , Pan F. . Quantum anomalous Hall insulator state in ferromagnetically ordered MnBi2Te4/VBi2Te4 heterostructures. Phys. Rev. B, 2020, 102(8): 085111
https://doi.org/10.1103/PhysRevB.102.085111
18 M. Otrokov M. , I. Klimovskikh I. , Bentmann H. , Zeugner A. , S. Aliev Z. , Gass S. , U. B. Wolter A. , V. Koroleva A. , Estyunin D. , M. Shikin A. , Blanco-Rey M. , Hoffmann M. , P. Rusinov I. , Yu. Vyazovskaya A. , V. Eremeev S. , M. Koroteev Y. , M. Kuznetsov V. , Freyse F. , Sánchez-Barriga J. , R. Amiraslanov I. , B. Babanly M. , T. Mamedov N. , A. Abdullayev N. , N. Zverev V. , Alfonsov A. , Kataev V. , Büchner B. , F. Schwier E. , Kumar S. , Kimura A. , Petaccia L. , Di Santo G. , C. Vidal R. , Schatz S. , Kißner K. , Ünzelmann M. , H. Min C. , Moser S. , R. F. Peixoto T. , Reinert F. , Ernst A. , M. Echenique P. , Isaeva A. , V. Chulkov E. . Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576(7787): 416
https://doi.org/10.1038/s41586-019-1840-9
19 Changdar S. , Ghosh S. , Vijay K. , Kar I. , Routh S. , K. Maheshwari P. , Ghorai S. , Banik S. , Thirupathaiah S. . Nonmagnetic Sn doping effect on the electronic and magnetic properties of antiferromagnetic topological insulator MnBi2Te4. Physica B, 2023, 657: 414799
https://doi.org/10.1016/j.physb.2023.414799
20 Zeugner A. , Nietschke F. , U. B. Wolter A. , Gaß S. , C. Vidal R. , R. F. Peixoto T. , Pohl D. , Damm C. , Lubk A. , Hentrich R. , K. Moser S. , Fornari C. , H. Min C. , Schatz S. , Kißner K. , Ünzelmann M. , Kaiser M. , Scaravaggi F. , Rellinghaus B. , Nielsch K. , Hess C. , Büchner B. , Reinert F. , Bentmann H. , Oeckler O. , Doert T. , Ruck M. , Isaeva A. . Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater., 2019, 31: 2795
https://doi.org/10.1021/acs.chemmater.8b05017
21 Qian T. , T. Yao Y. , Hu C. , Feng E. , Cao H. , I. Mazin I. , R. Chang T. , Ni N. . Magnetic dilution effect and topological phase transitions in (Mn1−xPbx)Bi2Te4. Phys. Rev. B, 2022, 106: 045121
https://doi.org/10.1103/PhysRevB.106.045121
22 V. Tarasov A. , P. Makarova T. , A. Estyunin D. , V. Eryzhenkov A. , I. Klimovskikh I. , A. Golyashov V. , A. Kokh K. , E. Tereshchenko O. , M. Shikin A. . Topological phase transitions driven by Sn doping in (Mn1−xSnx)Bi2Te4. Symmetry (Basel), 2023, 15(2): 469
https://doi.org/10.3390/sym15020469
23 M. Otrokov M. , V. Menshchikova T. , G. Vergniory M. , P. Rusinov I. , Y. Vyazovskaya A. , M. Koroteev Y. , Bihlmayer G. , Ernst A. , M. Echenique P. , Arnau A. . Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater., 2017, 4(2): 025082
https://doi.org/10.1088/2053-1583/aa6bec
24 J. Hao Y. , F. Liu P. , Feng Y. , M. Ma X. , F. Schwier E. , Arita M. , Kumar S. , W. Hu C. , E. Lu R. , Zeng M. , Wang Y. , Y. Hao Z. , Y. Sun H. , Zhang K. , W. Mei J. , Ni N. , S. Wu L. , Shimada K. , Y. Chen C. , H. Liu Q. , Liu C. . Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041038
https://doi.org/10.1103/PhysRevX.9.041038
25 F. Cao T. , F. Shao D. , Huang K. , T. Gurung G. , Y. Tsymbal E. . Switchable anomalous Hall effects in polar-stacked 2D antiferromagnet MnBi2Te4. Nano Lett., 2023, 23(9): 3781
https://doi.org/10.1021/acs.nanolett.3c00047
26 S. Lee D. , H. Kim T. , H. Park C. , Y. Chung C. , S. Lim Y. , S. Seo W. , H. Park H. . Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. CrystEngComm, 2013, 15(27): 5532
https://doi.org/10.1039/c3ce40643a
27 H. Lee S. , Zhu Y. , Wang Y. , Miao L. , Pillsbury T. , Yi H. , Kempinger S. , Hu J. , A. Heikes C. , Quarterman P. , Ratcliff W. , A. Borchers J. , Zhang H. , Ke X. , Graf D. , Alem N. , Z. Chang C. , Samarth N. , Mao Z. . Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res., 2019, 1(1): 012011
https://doi.org/10.1103/PhysRevResearch.1.012011
28 Peng R. , Zhang T. , He Z. , Wu Q. , Dai Y. , Huang B. , Ma Y. . Intrinsic layer-polarized anomalous Hall effect in bilayer MnBi2Te4. Phys. Rev. B, 2023, 107(8): 085411
https://doi.org/10.1103/PhysRevB.107.085411
29 Zhu J. , Naveed M. , Chen B. , Du Y. , Guo J. , Xie H. , Fei F. . Magnetic and electrical transport study of the antiferromagnetic topological insulator Sn-doped MnBi2Te4. Phys. Rev. B, 2021, 103(14): 144407
https://doi.org/10.1103/PhysRevB.103.144407
30 Q. Yan J. , L. Huang Z. , Wu W. , F. May A. , D. Wu W. , F. May A. . Vapor transport growth of MnBi2Te4 and related compounds. J. Alloys Compd., 2022, 906: 164327
https://doi.org/10.1016/j.jallcom.2022.164327
31 M. D. Coey J., Magnetism, magnetic materials, Cambridge University Press, 9780511845000 (2010)
32 Q. Yan J. , Okamoto S. , A. McGuire M. , F. May A. , J. McQueeney R. , C. Sales B. . Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4. Phys. Rev. B, 2019, 100(10): 104409
https://doi.org/10.1103/PhysRevB.100.104409
33 A. Lee P. , V. Ramakrishnan T. . Disordered electronic systems. Rev. Mod. Phys., 1985, 57(2): 287
https://doi.org/10.1103/RevModPhys.57.287
34 L. Altshuler B. , Khmel’nitzkii D. , I. Larkin A. , A. Lee P. . Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Phys. Rev. B, 1980, 22(11): 5142
https://doi.org/10.1103/PhysRevB.22.5142
35 Kondo J. . Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys., 1964, 32(1): 37
https://doi.org/10.1143/PTP.32.37
36 Y. Wu F. , Y. Wu Q. , Zhang C. , Luo Y. , Liu X. , F. Xu Y. , H. Lu D. , Hashimoto M. , Liu H. , Z. Zhao Y. , J. Song J. , H. Yuan Y. , Y. Liu H. , He J. , X. Duan Y. , F. Guo Y. , Q. Meng J. . Itinerant to relocalized transition of electrons in the Kondo insulator CeRu4Sn6. Front. Phys., 2023, 18(5): 53304
https://doi.org/10.1007/s11467-023-1298-y
37 Z. Lu H. , Q. Shen S. . Weak antilocalization and localization in disordered and interacting Weyl semimetals. Phys. Rev. B, 2015, 92(3): 035203
https://doi.org/10.1103/PhysRevB.92.035203
38 Liu H. , Fan J. , Zheng H. , Wang J. , Ma C. , Wang H. , Zhang L. , Wang C. , Zhu Y. , Yang H. . Magnetic properties and critical behavior of quasi-2D layered Cr4Te5 thin film. Front. Phys., 2023, 18(1): 13302
https://doi.org/10.1007/s11467-022-1210-1
39 Xu M. , Guo L. , Chen L. , Zhang Y. , S. Li S. , Zhao W. , Wang X. , Dong S. , K. Zheng R. . Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals. Front. Phys., 2023, 18(1): 13304
https://doi.org/10.1007/s11467-022-1198-6
40 T. Liu H. , Z. Xue Y. , A. Shi J. , A. Guzman R. , P. Zhang P. , Zhou Z. , G. He Y. , Bian C. , G. Wu L. , S. Ma R. , C. Chen J. , H. Yan J. , T. Yang H. , M. Shen C. , Zhou W. , H. Bao L. , J. Gao H. . Observation of the Kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano Lett., 2019, 19(12): 8572
https://doi.org/10.1021/acs.nanolett.9b03100
41 R. Hamann D. . New solution for exchange scattering in dilute alloys. Phys. Rev., 1967, 158(3): 570
https://doi.org/10.1103/PhysRev.158.570
42 P. Estyunina T. , M. Shikin A. , A. Estyunin D. , V. Eryzhenkov A. , I. Klimovskikh I. , A. Bokai K. , A. Golyashov V. , A. Kokh K. , E. Tereshchenko O. , Kumar S. , Shimada K. , V. Tarasov A. . Evolution of Mn1-xGexBi2Te4 electronic structure under variation of Ge content. Nanomaterials (Basel), 2023, 13(14): 2151
https://doi.org/10.3390/nano13142151
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed