1. Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, State Key Laboratory of Optoelectronic Materials and Technologies, Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China 2. School of Physical Sciences, Great Bay University, Dongguan 523000, China & Great Bay Institute for Advanced Study, Dongguan 523000, China 3. Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China 4. Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing 100875, China 5. International Quantum Academy, Shenzhen 518048, China
We investigate the magnetic excitations of the two-dimensional (2D) = 1/2 trimerized Heisenberg models with intratrimer interaction and intertrimer interaction on four different lattices using a combination of stochastic series expansion quantum Monte Carlo (SSE QMC) and stochastic analytic continuation methods (SAC), complemented by cluster perturbation theory (CPT). These models exhibit quasi-particle-like excitations when is weak, characterized by low-energy magnons, intermediate-energy doublons, and high-energy quartons. The low-energy magnons are associated with the magnetic ground states. They can be described by the linear spin wave theory (LSWT) of the effective block spin model and the original spin model. Doublons and quartons emerge from the corresponding internal excitations of the trimers with distinct energy levels, which can be effectively analyzed using perturbative calculation when the ratio of exchange interactions is weak. In this weak regime, we observe a clear separation between the magnon and higher-energy spectra. As increases, doublon and quarton gradually merge into the magnon modes or some continua. Notably, in the Collinear II and trimerized Hexagon lattice, a broad continuum emerges above the single-magnon spectrum, originating from the quasi-1D physics due to the dilute connections between chains. In addition, we also compare our numerical results to the experimental RIXS spectrum and analyze the difference. Our numerical analysis of these 2D trimers yields valuable theoretical predictions and explanations for the inelastic neutron scattering (INS) spectra of 2D magnetic materials featuring trimerized lattices.
Pines D., Elementary Excitations in Solids, CRC Press, 2018
2
J. P. Ament L., van Veenendaal M., P. Devereaux T., P. Hill J., and van den Brink J., Resonant inelastic X-ray scattering studies of elementary excitations, Rev. Mod. Phys. 83(2), 705 (2011) https://doi.org/10.1103/RevModPhys.83.705
Wulferding D., Choi Y., H. Do S., H. Lee C., Lemmens P., Faugeras C., Gallais Y., and Y. Choi K., Magnon bound states versus anyonic Majorana excitations in the Kitaev honeycomb magnet α-RuCl3, Nat. Commun. 11(1), 1603 (2020) https://doi.org/10.1038/s41467-020-15370-1
5
Coldea R., M. Hayden S., Aeppli G., G. Perring T., D. Frost C., E. Mason T., W. Cheong S., and Fisk Z., Spin waves and electronic interactions in La2CuO4, Phys. Rev. Lett. 86(23), 5377 (2001) https://doi.org/10.1103/PhysRevLett.86.5377
Peres N. and Araújo M., Spin waves in La2CuO4: Band structure and correlation effects, physica status solidi (b) 236, 523 (2003) https://doi.org/10.1002/pssb.200301719
8
S. Headings N., M. Hayden S., Coldea R., and G. Perring T., Anomalous high-energy spin excitations in the high Tc superconductor-parent antiferromagnet La2CuO4, Phys. Rev. Lett. 105(24), 247001 (2010) https://doi.org/10.1103/PhysRevLett.105.247001
9
Dalla Piazza B., Mourigal M., B. Christensen N., Nilsen G., Tregenna-Piggott P., Perring T., Enderle M., F. McMorrow D., Ivanov D., and M. Rønnow H., Fractional excitations in the square-lattice quantum antiferromagnet, Nat. Phys. 11(1), 62 (2015) https://doi.org/10.1038/nphys3172
10
Shao H., Q. Qin Y., Capponi S., Chesi S., Y. Meng Z., and W. Sandvik A., Nearly deconfined spinon excitations in the square-lattice spin-1/2 Heisenberg antiferromagnet, Phys. Rev. X 7(4), 041072 (2017) https://doi.org/10.1103/PhysRevX.7.041072
11
R. P. Singh R. and P. Gelfand M., Spin-wave excitation spectra and spectral weights in square lattice antiferromagnets, Phys. Rev. B 52(22), R15695 (1995) https://doi.org/10.1103/PhysRevB.52.R15695
12
W. Sandvik A. and R. P. Singh R., High-energy magnon dispersion and multimagnon continuum in the two-dimensional Heisenberg antiferromagnet, Phys. Rev. Lett. 86(3), 528 (2001) https://doi.org/10.1103/PhysRevLett.86.528
13
Yang L. and E. Feiguin A., From deconfined spinons to coherent magnons in an antiferromagnetic Heisenberg chain with long-range interactions, SciPost Phys. 10(5), 110 (2021) https://doi.org/10.21468/SciPostPhys.10.5.110
14
Powalski M., P. Schmidt K., and S. Uhrig G., Mutually attracting spin waves in the square-lattice quantum antiferromagnet, SciPost Phys. 4, 001 (2018) https://doi.org/10.21468/SciPostPhys.4.1.001
15
Powalski M., S. Uhrig G., and P. Schmidt K., Roton minimum as a fingerprint of Magnon‒Higgs scattering in ordered quantum antiferromagnets, Phys. Rev. Lett. 115(20), 207202 (2015) https://doi.org/10.1103/PhysRevLett.115.207202
16
Y. Sun G., C. Wang Y., Fang C., Qi Y., Cheng M., and Y. Meng Z., Dynamical signature of symmetry fractionalization in frustrated magnets, Phys. Rev. Lett. 121(7), 077201 (2018) https://doi.org/10.1103/PhysRevLett.121.077201
17
Q. Qin Y., Normand B., W. Sandvik A., and Y. Meng Z., Amplitude mode in three-dimensional dimerized antiferromagnets, Phys. Rev. Lett. 118(14), 147207 (2017) https://doi.org/10.1103/PhysRevLett.118.147207
18
Lohöfer M. and Wessel S., Excitation-gap scaling near quantum critical three-dimensional antiferromagnets, Phys. Rev. Lett. 118(14), 147206 (2017) https://doi.org/10.1103/PhysRevLett.118.147206
19
K. Fang J., H. Huang J., Q. Wu H., and X. Yao D., Dynamical properties of the Haldane chain with bond disorder, Front. Phys. 17(3), 33503 (2022) https://doi.org/10.1007/s11467-021-1124-3
20
Shen Y., Liu C., Qin Y., Shen S., D. Li Y., Bewley R., Schneidewind A., Chen G., and Zhao J., Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4, Nat. Commun. 10(1), 4530 (2019) https://doi.org/10.1038/s41467-019-12410-3
21
Zhou Z., Liu C., Yan Z., Chen Y., and F. Zhang X., Quantum dynamics of topological strings in a frustrated Ising antiferromagnet, npj Quantum Mater. 7, 60 (2022) https://doi.org/10.1038/s41535-022-00465-3
22
Majumder M., Kanungo S., Ghoshray A., Ghosh M., and Ghoshray K., Magnetism of the spin-trimer compound CaNi3(P2O7)2: Microscopic insight from combined 31P NMR and first-principles studies, Phys. Rev. B 91(10), 104422 (2015) https://doi.org/10.1103/PhysRevB.91.104422
23
Shen Y., Sears J., Fabbris G., Weichselbaum A., Yin W., Zhao H., G. Mazzone D., Miao H., H. Upton M., Casa D., Acevedo-Esteves R., Nelson C., M. Barbour A., Mazzoli C., Cao G., and P. M. Dean M., Emergence of spinons in layered trimer iridate Ba4Ir3O10, Phys. Rev. Lett. 129(20), 207201 (2022) https://doi.org/10.1103/PhysRevLett.129.207201
24
Cao G., Zheng H., Zhao H., Ni Y., A. Pocs C., et al.. Quantum liquid from strange frustration in the trimer magnet Ba4Ir3O10, npj Quantum Mater. 5, 26 (2020) https://doi.org/10.1038/s41535-020-0232-6
25
Cao G., Zhao H., Hu B., Pellatz N., Reznik D., Schlottmann P., and Kimchi I., Quest for quantum states via field-altering technology, npj Quantum Mater. 5, 83 (2020) https://doi.org/10.1038/s41535-020-00286-2
26
Chen X., He Y., Wu S., Song Y., Yuan D., Bourret-Courchesne E., P. C. Ruff J., Islam Z., Frano A., and J. Birgeneau R., Structural and magnetic transitions in the planar antiferromagnet Ba4Ir3O10, Phys. Rev. B 103(22), 224420 (2021) https://doi.org/10.1103/PhysRevB.103.224420
27
Sokolik A., Hakani S., Roy S., Pellatz N., Zhao H., Cao G., Kimchi I., and Reznik D., Spinons and damped phonons in the spin-1/2 quantum liquid Ba4Ir3O10 observed by Raman scattering, Phys. Rev. B 106(7), 075108 (2022) https://doi.org/10.1103/PhysRevB.106.075108
28
Jiang Q. and X. Yao D., Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2, Front. Phys. 11(2), 117401 (2016) https://doi.org/10.1007/s11467-015-0527-4
29
Nie X.Li J.Datta T.X. Yao D., A spin–rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk, Front. Phys. 19(5), 53201 (2024)
30
Xu Y., Xiong Z., Q. Wu H., and X. Yao D., Spin excitation spectra of the two-dimensional S = 1/2 Heisenberg model with a checkerboard structure, Phys. Rev. B 99(8), 085112 (2019) https://doi.org/10.1103/PhysRevB.99.085112
31
Yan T., Jin S., Xiong Z., Li J., and X. Yao D., Magnetic excitations of diagonally coupled checkerboards, Chin. Phys. B 30(10), 107505 (2021) https://doi.org/10.1088/1674-1056/ac1b94
32
Ma N., Y. Sun G., Z. You Y., Xu C., Vishwanath A., W. Sandvik A., and Y. Meng Z., Dynamical signature of fractionalization at a deconfined quantum critical point, Phys. Rev. B 98(17), 174421 (2018) https://doi.org/10.1103/PhysRevB.98.174421
33
Ran X., Ma N., and X. Yao D., Criticality and scaling corrections for two-dimensional Heisenberg models in plaquette patterns with strong and weak couplings, Phys. Rev. B 99(17), 174434 (2019) https://doi.org/10.1103/PhysRevB.99.174434
34
Tan Y. and X. Yao D., Spin waves and phase transition on a magnetically frustrated square lattice with long-range interactions, Front. Phys. 18(3), 33309 (2023) https://doi.org/10.1007/s11467-022-1238-2
35
Q. Cheng J., Li J., Xiong Z., Q. Wu H., W. Sandvik A., and X. Yao D., Fractional and composite excitations of antiferromagnetic quantum spin trimer chains, npj Quantum Mater. 7, 3 (2022) https://doi.org/10.1038/s41535-021-00416-4
36
Strohmaier N., Greif D., Jördens R., Tarruell L., Moritz H., Esslinger T., Sensarma R., Pekker D., Altman E., and Demler E., Observation of elastic doublon decay in the Fermi‒Hubbard model, Phys. Rev. Lett. 104(8), 080401 (2010) https://doi.org/10.1103/PhysRevLett.104.080401
37
Terashige T., Ono T., Miyamoto T., Morimoto T., Yamakawa H., Kida N., Ito T., Sasagawa T., Tohyama T., and Okamoto H., Doublon‒Holon pairing mechanism via exchange interaction in two-dimensional cuprate Mott insulators, Sci. Adv. 5(6), eaav2187 (2019) https://doi.org/10.1126/sciadv.aav2187
38
Ye Y., Peng K., Naghiloo M., Cunningham G., and P. O’Brien K., Engineering purely nonlinear coupling between superconducting qubits using a quarton, Phys. Rev. Lett. 127(5), 050502 (2021) https://doi.org/10.1103/PhysRevLett.127.050502
39
K. Bera A., Yusuf S., K. Saha S., Kumar M., Voneshen D., Skourski Y., and A. Zvyagin S., Emergent many-body composite excitations of interacting spin-1/2 trimers, Nat. Commun. 13(1), 6888 (2022) https://doi.org/10.1038/s41467-022-34342-1
40
Q. Cheng J.Y. Ning Z.Q. Wu H.X. Yao D., Quantum phase transitions and composite excitations of antiferromagnetic quantum spin trimer chains in a magnetic field, arXiv: 2402.00272 (2024)
41
Klein Y., Rousse G., Damay F., Porcher F., André G., and Terasaki I., Antiferromagnetic order and consequences on the transport properties of Ba4Ru3O10, Phys. Rev. B 84, 054439 (2011) https://doi.org/10.1103/PhysRevB.84.054439
42
Igarashi T., Okazaki R., Taniguchi H., Yasui Y., and Terasaki I., Effects of the Ir impurity on the thermodynamic and transport properties of Ba4Ru3O10, J. Phys. Soc. Jpn. 84(9), 094601 (2015) https://doi.org/10.7566/JPSJ.84.094601
43
Weber L., Honecker A., Normand B., Corboz P., Mila F., and Wessel S., Quantum Monte Carlo simulations in the trimer basis: First-order transitions and thermal critical points in frustrated trilayer magnets, SciPost Phys. 12, 054 (2022) https://doi.org/10.21468/SciPostPhys.12.2.054
44
Yang H., Zeng J., You S., Han Y., and Qiao Z., Equipartition of current in metallic armchair nanoribbon of graphene-based device, Front. Phys. 17(6), 63508 (2022) https://doi.org/10.1007/s11467-022-1201-2
Chen Y., Wu W., Liu G., Tao H., and Liu W., Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys. 7(2), 223 (2012) https://doi.org/10.1007/s11467-012-0247-y
48
Weichselbaum A., Yin W., and M. Tsvelik A., Dimerization and spin decoupling in a two-leg Heisenberg ladder with frustrated trimer rungs, Phys. Rev. B 103(12), 125120 (2021) https://doi.org/10.1103/PhysRevB.103.125120
Bergeron D. and M. S. Tremblay A., Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation, Phys. Rev. E 94(2), 023303 (2016) https://doi.org/10.1103/PhysRevE.94.023303
Kato T., Perturbation Theory for Linear Operators, Vol. 132, Springer Science & Business Media, 2013
57
H. Huang J., Liu Z., Q. Wu H., and X. Yao D., Ground states and dynamical properties of the S > 1/2 quantum Heisenberg model on the 1/5-depleted square lattice, Phys. Rev. B 106(8), 085101 (2022) https://doi.org/10.1103/PhysRevB.106.085101
58
Vafayi K. and Gunnarsson O., Analytical continuation of spectral data from imaginary time axis to real frequency axis using statistical sampling, Phys. Rev. B 76(3), 035115 (2007) https://doi.org/10.1103/PhysRevB.76.035115
59
R. Reichman D. and Rabani E., Analytic continuation average spectrum method for quantum liquids, J. Chem. Phys. 131(5), 054502 (2009) https://doi.org/10.1063/1.3185728
60
F. Syljuåsen O., Using the average spectrum method to extract dynamics from quantum Monte Carlo simulations, Phys. Rev. B 78(17), 174429 (2008) https://doi.org/10.1103/PhysRevB.78.174429
61
Fuchs S., Pruschke T., and Jarrell M., Analytic continuation of quantum Monte Carlo data by stochastic analytical inference, Phys. Rev. E 81(5), 056701 (2010) https://doi.org/10.1103/PhysRevE.81.056701
62
Ghanem K. and Koch E., Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid, Phys. Rev. B 101(8), 085111 (2020) https://doi.org/10.1103/PhysRevB.101.085111
63
Ghanem K. and Koch E., Extending the average spectrum method: Grid point sampling and density averaging, Phys. Rev. B 102(3), 035114 (2020) https://doi.org/10.1103/PhysRevB.102.035114
L. Yu S., Wang W., Y. Dong Z., J. Yao Z., and X. Li J., Deconfinement of spinons in frustrated spin systems: Spectral perspective, Phys. Rev. B 98(13), 134410 (2018) https://doi.org/10.1103/PhysRevB.98.134410
66
Sénéchal D., Perez D., and Pioro-Ladriere M., Spectral weight of the Hubbard model through cluster perturbation theory, Phys. Rev. Lett. 84(3), 522 (2000) https://doi.org/10.1103/PhysRevLett.84.522
67
S. Ovchinnikov A., G. Bostrem I., and E. Sinitsyn V., Cluster perturbation theory for spin Hamiltonians, Theor. Math. Phys. 162(2), 179 (2010) https://doi.org/10.1007/s11232-010-0013-7
68
Wu J., P. L. Faye J., Sénéchal D., and Maciejko J., Quantum cluster approach to the spinful Haldane‒Hubbard model, Phys. Rev. B 93(7), 075131 (2016) https://doi.org/10.1103/PhysRevB.93.075131
69
Dahnken C., Aichhorn M., Hanke W., Arrigoni E., and Potthoff M., Variational cluster approach to spontaneous symmetry breaking: The itinerant antiferromagnet in two dimensions, Phys. Rev. B 70(24), 245110 (2004) https://doi.org/10.1103/PhysRevB.70.245110
W. Sandvik A. and G. Evertz H., Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis, Phys. Rev. B 82(2), 024407 (2010) https://doi.org/10.1103/PhysRevB.82.024407
72
Gerber U., P. Hofmann C., J. Jiang F., Nyfeler M., and J. Wiese U., The constraint effective potential of the staggered magnetization in an antiferromagnet, J. Stat. Mech-theory E 2009, P03021 (2009) https://doi.org/10.1088/1742-5468/2009/03/P03021
73
B. Beard B., J. Birgeneau R., Greven M., and J. Wiese U., Square-lattice Heisenberg antiferromagnet at very large correlation lengths, Phys. Rev. Lett. 80(8), 1742 (1998) https://doi.org/10.1103/PhysRevLett.80.1742
74
K. Bera A., M. Yusuf S., Kumar A., Majumder M., Ghoshray K., and Keller L., Long-range and shortrange magnetic correlations, and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14, Phys. Rev. B 93(18), 184409 (2016) https://doi.org/10.1103/PhysRevB.93.184409
75
K. Bera A., M. Yusuf S., and T. Adroja D., Excitations in the spin-1 trimer chain compound CaNi3P4O14: From gapped dispersive spin waves to gapless magnetic excitations, Phys. Rev. B 97(22), 224413 (2018) https://doi.org/10.1103/PhysRevB.97.224413
76
Hase M., Kitazawa H., Tsujii N., Ozawa K., Kohno M., and Kido G., Ferrimagnetic long-range order caused by periodicity of exchange interactions in the spin-1 trimer chain compounds ANi3P4O14 (A = Ca, Sr, Pb, Ba), Phys. Rev. B 74(2), 024430 (2006) https://doi.org/10.1103/PhysRevB.74.024430
77
Zhou C., Yan Z., Q. Wu H., Sun K., A. Starykh O., and Y. Meng Z., Amplitude mode in quantum magnets via dimensional crossover, Phys. Rev. Lett. 126(22), 227201 (2021) https://doi.org/10.1103/PhysRevLett.126.227201
78
Lin Z., H. Choi J., Zhang Q., Qin W., Yi S., Wang P., Li L., Wang Y., Zhang H., Sun Z., Wei L., Zhang S., Guo T., Lu Q., H. Cho J., Zeng C., and Zhang Z., Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagomé lattices, Phys. Rev. Lett. 121(9), 096401 (2018) https://doi.org/10.1103/PhysRevLett.121.096401
79
Wu C., Bergman D., Balents L., and Das Sarma S., Flat bands and Wigner crystallization in the honeycomb optical lattice, Phys. Rev. Lett. 99(7), 070401 (2007) https://doi.org/10.1103/PhysRevLett.99.070401
80
X. Yin J., S. Zhang S., Chang G., Wang Q., S. Tsirkin S., Guguchia Z., Lian B., Zhou H., Jiang K., Belopolski I., Shumiya N., Multer D., Litskevich M., A. Cochran T., Lin H., Wang Z., Neupert T., Jia S., Lei H., and Z. Hasan M., Negative flat band magnetism in a spin–orbit coupled correlated kagomé magnet, Nat. Phys. 15(5), 443 (2019) https://doi.org/10.1038/s41567-019-0426-7
81
Li M., Wang Q., Wang G., Yuan Z., Song W., Lou R., Liu Z., Huang Y., Liu Z., Lei H., Yin Z., and Wang S., Dirac cone, flat band and saddle point in kagomé magnet YMn6Sn6, Nat. Commun. 12(1), 3129 (2021) https://doi.org/10.1038/s41467-021-23536-8
82
Luo C., Datta T., Huang Z., and X. Yao D., Signatures of indirect k-edge resonant inelastic X-ray scattering on magnetic excitations in a triangular-lattice antiferromagnet, Phys. Rev. B 92(3), 035109 (2015) https://doi.org/10.1103/PhysRevB.92.035109
83
Luo C., Datta T., and X. Yao D., Spectrum splitting of bimagnon excitations in a spatially frustrated Heisenberg antiferromagnet revealed by resonant inelastic X-ray scat tering, Phys. Rev. B 89(16), 165103 (2014) https://doi.org/10.1103/PhysRevB.89.165103
84
R. Shu Y., X. Yao D., W. Ke C., C. Lin Y., and W. Sandvik A., Properties of the random-singlet phase: From the disordered Heisenberg chain to an amorphous valence-bond solid, Phys. Rev. B 94, 174442 (2016) https://doi.org/10.1103/PhysRevB.94.174442
85
Q. Wu H., S. Gong S., and N. Sheng D., Randomness-induced spin-liquid-like phase in the spin-1/2 J1−J2 triangular Heisenberg model, Phys. Rev. B 99, 085141 (2019) https://doi.org/10.1103/PhysRevB.99.085141
86
Jullien R., Pfeuty P., N. Fields J., and Doniach S., Zerotemperature renormalization method for quantum systems. I. Ising model in a transverse field in one dimension, Phys. Rev. B 18(7), 3568 (1978) https://doi.org/10.1103/PhysRevB.18.3568
87
A. Martín-Delgado M. and Sierra G., Real space renormalization group methods and quantum groups, Phys. Rev. Lett. 76(7), 1146 (1996) https://doi.org/10.1103/PhysRevLett.76.1146
88
Kargarian M., Jafari R., and Langari A., Renormalization of entanglement in the anisotropic Heisenberg XXZ model, Phys. Rev. A 77(3), 032346 (2008) https://doi.org/10.1103/PhysRevA.77.032346
89
Q. Cheng J., Wu W., and B. Xu J., Multipartite entanglement in an XXZ spin chain with Dzyaloshinskii–Moriya interaction and quantum phase transition, Quantum Inform. Process. 16(9), 231 (2017) https://doi.org/10.1007/s11128-017-1683-y
90
Usman M., Ilyas A., and Khan K., Quantum renormalization group of the XY model in two dimensions, Phys. Rev. A 92(3), 032327 (2015) https://doi.org/10.1103/PhysRevA.92.032327
91
Q. Cheng J. and B. Xu J., Multipartite entanglement, quantum coherence, and quantum criticality in triangular and Sierpiński fractal lattices, Phys. Rev. E 97(6), 062134 (2018) https://doi.org/10.1103/PhysRevE.97.062134
92
Wessel S., Normand B., Mila F., and Honecker A., Efficient quantum Monte Carlo simulations of highly frustrated magnets: The frustrated spin-1/2 ladder, SciPost Phys. 3, 005 (2017) https://doi.org/10.21468/SciPostPhys.3.1.005
93
Honecker A., Weber L., Corboz P., Mila F., and Wessel S., Quantum Monte Carlo simulations of highly frustrated magnets in a cluster basis: The two-dimensional Shastry−Sutherland model, J. Phys. Conf. Ser. 2207(1), 012032 (2022) https://doi.org/10.1088/1742-6596/2207/1/012032