Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2009, Vol. 4 Issue (1) : 94-96    https://doi.org/10.1007/s11467-009-0002-1
RESEARCH ARTICLE
The thermodynamics in a dynamical black hole
Bo LIU (刘博), Wen-biao LIU(刘文彪,)
Department of Physics, Institute of Theoretical Physics, Beijing Normal University, Beijing 100875, China
 Download: PDF(320 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Considering the back-reaction of emitting particles to the black hole, a “new” horizon is suggested where thermodynamics can be built in the dynamical black hole. It, at least, means that the thermodynamics of a dynamical black hole should not be constructed at the original event horizon any more. The temperature, “new” horizon position and radiating particles’ energy will be consistent again under the theory of equilibrium thermodynamical system.

Keywords Hawking radiation      black hole      information loss paradox      back-reaction      event horizon      thermodynamics     
Corresponding Author(s): null,Email:wbliu@bnu.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Bo LIU (刘博),Wen-biao LIU(刘文彪). The thermodynamics in a dynamical black hole[J]. Front. Phys. , 2009, 4(1): 94-96.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0002-1
https://academic.hep.com.cn/fop/EN/Y2009/V4/I1/94
1 S. W. Hawking, Commun. Math. Phys. , 1975, 43: 199
doi: 10.1007/BF02345020
2 S. W. Hawking, Nature , 1974, 248: 30
doi: 10.1038/248030a0
3 J. D. Bekenstein, Phys. Rev. D , 1973, 7: 2333
doi: 10.1103/PhysRevD.7.2333
4 J. D. Bekenstein, Phys. Rev. D , 1974, 9: 3292
doi: 10.1103/PhysRevD.9.3292
5 J. M. Bardeen, B. Carter, and S. W. Hawking, Commun. Math. Phys. , 1973, 31: 161
doi: 10.1007/BF01645742
6 S. W. Hawking, Phys. Rev. D , 1976, 14: 2460
doi: 10.1103/PhysRevD.14.2460
7 S. W. Hawking, Phys. Rev. D , 2005, 72: 084013
doi: 10.1103/PhysRevD.72.084013
8 M. K. Parikh and F. Wilczek, Phys. Rev. Lett. , 2000, 85: 5042
doi: 10.1103/PhysRevLett.85.5042
9 M. K. Parikh, Int. J. Mod. Phys. D , 2004, 13: 2355
doi: 10.1142/S0218271804006498
10 M. K. Parikh, arXiv: hep-th/0402166, 2004
11 P. Kraus and F. Wilczek, Nucl. Phys. B , 1995, 433: 403
doi: 10.1016/0550-3213(94)00411-7
12 S. Hemming and E. Keski-Vakkuri, Phys. Rev. D , 2001, 64: 044006
doi: 10.1103/PhysRevD.64.044006
13 A. J. M. Medved, Phys. Rev. D , 2002, 66: 124009
doi: 10.1103/PhysRevD.66.124009
14 E. C. Vagenas, Phys. Lett. B , 2001, 503: 399
doi: 10.1016/S0370-2693(01)00242-8
15 E. C. Vagenas, Phys. Lett. B , 2004, 584: 127
doi: 10.1016/j.physletb.2004.01.039
16 J. Y. Zhang and Z. Zhao, Phys. Lett. B , 2005, 618: 14
doi: 10.1016/j.physletb.2005.05.024
17 J. Y. Zhang and Z. Zhao, Nucl. Phys. B , 2005, 725: 173
doi: 10.1016/j.nuclphysb.2005.07.024
18 J. Ren, J. Y. Zhang, and Z. Zhao, Chin. Phys. Lett ., 2006, 23: 2019
doi: 10.1088/0256-307X/23/8/016
19 W. B. Liu, Acta Physica Sinica , 2007, 56(10): 6164
20 X. K. He and W. B. Liu, Chin. Phys. Lett. , 2007, 24: 2448
doi: 10.1088/0256-307X/24/8/080
21 S. W. Zhou and W. B. Liu, Phys. Rev. D , 2008, 77(10): 104021
doi: 10.1103/PhysRevD.77.104021
22 T. Damour and R. Ruffini, Phys. Rev. D , 1976, 14: 332
doi: 10.1103/PhysRevD.14.332
23 G. Fodor, K. Nakamura, Y. Oshiro, and A. Tomimatsu, Phys. Rev. D , 1996, 54: 3882
doi: 10.1103/PhysRevD.54.3882
24 W. Collins, Phys. Rev. D , 1992, 45: 495
doi: 10.1103/PhysRevD.45.495
[1] Zhan-Chun Tu. Abstract models for heat engines[J]. Front. Phys. , 2021, 16(3): 33202-.
[2] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[3] Hui-Juan Xu, Tong Tong, Rui-Zheng Hou, Hong-Rong Li. Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes[J]. Front. Phys. , 2018, 13(5): 138206-.
[4] Deng Pan, Hong-Xing Xu. Gravitational field around black hole induces photonic spin–orbit interaction that twists light[J]. Front. Phys. , 2017, 12(5): 128102-.
[5] Ting-Hua Li (李廷华),Dong-Lai Zhu(朱东来),Fu-Chun Mao(毛福春),Ming Huang(黄铭),Jing-Jing Yang(杨晶晶),Shou-Bo Li. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Front. Phys. , 2016, 11(5): 110503-.
[6] Mahamat Saleh,Bouetou Thomas Bouetou,Timoleon Crepin Kofane. Hawking radiation from a five-dimensional Lovelock black hole[J]. Front. Phys. , 2015, 10(5): 100401-.
[7] Wei-Zhen Pan(潘伟珍), Xue-Jun Yang(杨学军), Guo-Xiang Yu(余国祥). Quantum nonthermal effect of the Vaidya–Bonner–de Sitter black hole[J]. Front. Phys. , 2014, 9(1): 94-97.
[8] Shuang-Nan Zhang. Black hole binaries and microquasars[J]. Front. Phys. , 2013, 8(6): 630-660.
[9] Henric Krawczynski, Ezequiel Treister. Active galactic nuclei – the physics of individual sources and the cosmic history of formation and evolution[J]. Front. Phys. , 2013, 8(6): 609-629.
[10] Li-fang SONG (宋莉芳), Chun-hong JIANG (姜春红), Shu-sheng LIU (刘淑生), Cheng-li JIAO (焦成丽), Xiao-liang SI (司晓亮), Shuang WANG (王爽), Fen LI (李芬), Jian ZHANG (张箭), Li-xian SUN (孙立贤), Fen XU (徐芬), Feng-lei HUANG (黄风雷). Progress in improving thermodynamics and kinetics of new hydrogen storage materials[J]. Front. Phys. , 2011, 6(2): 151-161.
[11] Han DING (丁翰), Wen-biao LIU (刘文彪). Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method[J]. Front. Phys. , 2011, 6(1): 106-108.
[12] Ji-li HUANG(黄基利), Wen-biao LIU(刘文彪), . Fluctuation around horizon on a Schwarzschild black hole using the null geodesic method[J]. Front. Phys. , 2009, 4(4): 530-533.
[13] Qiao BI (毕桥), Li-li LIU(刘莉丽), Jin-qing FANG(方锦清). Condensation and evolution of a space–time network[J]. Front Phys Chin, 2009, 4(2): 231-234.
[14] LANG Xing-you, JIANG Qing. Size dependence of phase transition temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals[J]. Front. Phys. , 2007, 2(3): 289-311.
[15] WU Zhi-min, WU Zhi-min, WANG Xin-qiang, WANG Xin-qiang, XIAO Xu-yang, XIAO Xu-yang, HE Huan-dian, HE Huan-dian, LUO Qiang, LUO Qiang. Thermodynamic properties of noble metal clusters: molecular dynamics simulation[J]. Front. Phys. , 2006, 1(3): 351-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed