Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    0, Vol. Issue () : 122-136    https://doi.org/10.1007/s11467-009-0007-9
RESEARCH ARTICLE
Entropy production in a cell and reversal of entropy flow as an anticancer therapy
Liao-fu LUO(罗辽复,)
Laboratory of Theoretical Biophysics, Faculty of Science and Technology, Inner Mongolia University, Hohhot 010021, China
 Download: PDF(692 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The entropy production rate of cancer cells is always higher than healthy cells in the case where no external ?eld is applied. Different entropy production between two kinds of cells determines the direction of entropy ?ow among cells. The entropy ?ow is the carrier of information ?ow. The entropy ?ow from cancerous cells to healthy cells takes along the harmful information of cancerous cells, propagating its toxic action to healthy tissues. We demonstrate that a low-frequency and lowintensity electromagnetic ?eld or ultrasound irradiation may increase the entropy production rate of a cell in normal tissue than that in cancer and consequently reverse the direction of entropy current between two kinds of cells. The modi?cation of the PH value of cells may also cause the reversal of the direction of entropy ?ow between healthy and cancerous cells. Therefore, the biological tissue under the irradiation of an electromagnetic ?eld or ultrasound or under the appropriate change of cell acidity can avoid the propagation of harmful information from cancer cells. We suggest that this entropy mechanism possibly provides a basis for a novel approach to anticancer therapy.

Keywords entropy production      information ?ow      cell      ultrasound      electromagnetic ?eld      anticancer therapy     
Corresponding Author(s): null,Email:lolfcm@mail.imu.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Liao-fu LUO(罗辽复). Entropy production in a cell and reversal of entropy flow as an anticancer therapy[J]. Front. Phys. , 0, (): 122-136.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0007-9
https://academic.hep.com.cn/fop/EN/Y0/V/I/122
1 E. Schr?dinger, What is Life? Physical Aspects of Living Cell , Cambridge: Cambridge University Press, 1948
2 L. F. Luo, Theoretic-Physical Approach to Molecular Biology , Shanghai: Shanghai Scienti?c and Technical Publisher, 2004
3 L. F. Luo, Journal of Hefei University (Natural Sciences) , 2006, 16: 1
4 L. F. Luo, J. Molnar, H. Ding, X. G. Lv, and Spengler G., Diagnostic Pathology , 2006, 1: 43
doi: 10.1186/1746-1596-1-43
5 L. F. Luo, J. Molnar, H. Ding, X. G. Lv, and G. Spengler, Diagnostic Pathology , 2006, 1:35
doi: 10.1186/1746-1596-1-35
6 P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations , New York: Wiley Interscience, 1978
7 B. G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium Systems , New York: Wiley Interscience, 1977
8 J. Molnar, B. S. Thornton, A.Molnar, D. Gaal, L. Luo, and E. Bergmann-Leitner, Letters in Drug Design & Discovery , 2005, 2: 429
doi: 10.2174/1570180054771473
9 B. Albert, , Essential Cell Biology . Spain: Garland Science, 2004
10 D. C. Malins, N. L. Polissar, S. Schaeffer, Y. Su, and M. Vinson, Proc. Natl. Acad. Sci. , 1998, 95: 7637
doi: 10.1073/pnas.95.13.7637
11 T. Sz?ke, K. Kayser, , Eur. J. Cardiothorac. Surg. , 2005, 27(6): 1106
doi: 10.1016/j.ejcts.2005.01.036
12 R. Rossignol, R. Gilkerson, R. Aggeler, K. Yamagata, S. J. Remington, and R. A. Capaldi, Cancer Research , 2004, 64: 985
doi: 10.1158/0008-5472.CAN-03-1101
13 V. Maximo and M. Sobrinho-Simoes, Virchows Arch. , 2000, 437: 107, PubMed ID: 20445365
doi: 10.1007/s004280000219
14 M. J. Tisdale, J. Supportive Oncology , 2003, 1: 159
15 B. Islam-Ali and M. S. Tisdale, Br. J. Cancer , 2001, 84: 1648
doi: 10.1054/bjoc.2001.1834
16 T. M. Watchorn, I. D. Waddell, N. Dowidar, , FASEB Journal , 2001, 15: 562
17 M. K. Trudy and J. R. McKee, Biochemistry: An Introduction, 2nd Ed. , New York: McGraw-Hill Co., 1999
18 A. Lehninger, Principles of Biochemistry , New York: Worth, 1982
19 The CyberCell database (CCDB), E coli Statistics , 2006, see: http://redpoll.pharmacy.ualberta.ca/CCDB/cgi-bin/STAT NEW.cgi
20 De Robertis, W. Nowinski, and F. Sanez, Cell Biology, 5th Ed. , Philadelphia: Saunders, 2004
21 L. E. Reichl, A Modern Course in Statistical Physics , Austin: University of Texas Press, 1980
22 C. W. Gardiner, Handbook of Stochastic Method, 2nd Ed. , Heidelberg: Springer-Verlag, 1985
23 X. S. Xing, Science in China Ser. G , 2005, 35(4): 337
24 D. Neri and R. Bicknell, Nature Reviews/Cancer , 2005, 5: 436
doi: 10.1038/nrc1627
25 H. Frohlich, Theory of Dielectricity , Oxford: Clarendon Press, 1949
26 Y. Polevaya, , Biochim et Biophys. Acta. , 1999, 1419: 257
doi: 10.1016/S0005-2736(99)00072-3
27 S. T. Barsamian, B. L. Reid, and B. S. Thornton, IRCS Med. Sci . 1985, 13: 1103
28 L. Sha, E. R. Ward, and B. Stroy, Proc. IEEE Sourtheast Con. , 2002: 457
29 D. Haemmerich, , Physiol. Meas. , 2003, 24: 251
doi: 10.1088/0967-3334/24/2/302
30 A. Jordan, R. Scholz, and P. Wust, , J. Magn. Magn. Mater. , 2001, 225: 118
doi: 10.1016/S0304-8853(00)01239-7
31 K. R. Foster, IEEE Trans. Plasma Sci. , 2000, 28: 15
doi: 10.1109/27.842819
32 M. Simeonova, D. Wachner, and J. Gimsa, Bioelectrochemistry , 2002, 56: 215
doi: 10.1016/S1567-5394(02)00010-5
33 T. Kotnik and D. Mikalavcic, Bioelectromagnetics , 2000, 21: 385
doi: 10.1002/1521-186X(200007)21:5<385::AID-BEM7>3.0.CO;2-F
34 M. J. Jaroseski, R. Gilbert, and R. Heller, Advanced Drug Delivery Reviews , 1997, 26: 185
doi: 10.1016/S0169-409X(97)00034-3
35 Sergio Rodriguez-Cuevas, , Archives Medical Res. , 2001, 32: 273
doi: 10.1016/S0188-4409(01)00278-8
36 J. Larkin, D. Soden, G. C. O’Sullivan, , European. J. Cancer , 2005, 41: 1339
doi: 10.1016/j.ejca.2005.01.025
37 S. J. Beebe, P. M. Fox, L. J. Rec, , IEEE Transactions on Plasma Science , 2002, 30(1): 286
doi: 10.1109/TPS.2002.1003872
38 F. Q. Zhen, , Science in China Ser. C , 2002, 45:33
39 J. L. Rose and B. B. Goldberg, Basic Physics in Diagnostic Ultrasound , New York: John Wiley & Sons, 1979
40 C. M. Sehgal and J. F. Greemleaf, J. Acoust. Soc. Am. , 1982, 72(6): 1711
doi: 10.1121/1.388664
41 H. Pauly and H. P. Schwan, J. Acoust. Soc. Am. , 1971, 50(2): 692
doi: 10.1121/1.1912685
42 L. Bergmann, Ultrasound (Chinese Translation from Russian) , Beijing: National Defense Industry Press, 1964
43 F. Wu, Z. Wang, W. Chen, , Ultrasound Med. Biol. , 2004, 30: 245
doi: 10.1016/j.ultrasmedbio.2003.10.010
44 C. J. Ding and L. F. Luo, Proceedings of the First International Conference on Biomedical Engineering and Informatics (BMEI2008) , 2008, Vol. 1: 483
[1] Na Sa, Meng Wu, Hui-Qiong Wang. Review of the role of ionic liquids in two-dimensional materials[J]. Front. Phys. , 2023, 18(4): 43601-.
[2] Qiugang Liao, Hao Liu, Ziqiang Chen, Yinggan Zhang, Rui Xiong, Zhou Cui, Cuilian Wen, Baisheng Sa. Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance[J]. Front. Phys. , 2023, 18(3): 33300-.
[3] Yan-Ping Liu (刘艳平), Xiang Li (李翔), Jing Qu (屈静), Xue-Juan Gao (高学娟), Qing-Zu He (何情祖), Li-Yu Liu (刘雳宇), Ru-Chuan Liu (刘如川), Jian-Wei Shuai (帅建伟). Motile parameters of cell migration in anisotropic environment derived by speed power spectrum fitting with double exponential decay[J]. Front. Phys. , 2020, 15(1): 13602-.
[4] Shi-Qiang Luo, Ji-Fei Wang, Bin Yang, Yong-Bo Yuan. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device[J]. Front. Phys. , 2019, 14(5): 53401-.
[5] Hui-Juan Xu, Tong Tong, Rui-Zheng Hou, Hong-Rong Li. Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes[J]. Front. Phys. , 2018, 13(5): 138206-.
[6] Sajid-ur- Rehman, Faheem K. Butt, Chuanbo Li, Bakhtiar Ul Haq, Zeeshan Tariq, F. Aleem. First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices[J]. Front. Phys. , 2018, 13(3): 137805-.
[7] Irina Piazza, Antonio Cupane, Emmanuel L. Barbier, Claire Rome, Nora Collomb, Jacques Ollivier, Miguel A. Gonzalez, Francesca Natali. Dynamical properties of water in living cells[J]. Front. Phys. , 2018, 13(1): 138301-.
[8] Zhong-Liang Pan,Ling Chen,Guang-Zhao Zhang. Efficient design method for cell allocation in hybrid CMOS/nanodevices using a cultural algorithm with chaotic behavior[J]. Front. Phys. , 2016, 11(2): 116201-.
[9] Bao An(保安),Chen Yao-Hua(陈耀华),Lin Heng-Fu(林恒福),Liu Hai-Di(刘海迪),Zhang Xiao-Zhong(章晓中). Quantum phase transitions in two-dimensional strongly correlated fermion systems[J]. Front. Phys. , 2015, 10(5): 106401-.
[10] Ying-Bing Chen, Yan-Hui Liu, Yan Zeng, Wei Mao, Lin Hu, Zong-Liang Mao, Hou-Qiang Xu. Optimal aspect ratio of endocytosed spherocylindrical nanoparticle[J]. Front. Phys. , 2015, 10(1): 108702-.
[11] Yan-Hui Liu, Ying-Bing Chen, Wei Mao, Lin Hu, Lin-Hong Deng, Hou-Qiang Xu. Dimensions of receptor-ligand complex and the optimal radius of endocytosed virus-like particle[J]. Front. Phys. , 2014, 9(4): 519-522.
[12] Martin H. Magnusson, B. Jonas Ohlsson, Mikael T. Björk, Kimberly A. Dick, Magnus T. Borgström, Knut Deppert, Lars Samuelson. Semiconductor nanostructures enabled by aerosol technology[J]. Front. Phys. , 2014, 9(3): 398-418.
[13] Zhang-Hu Hu, Mao-Du Chen, You-Nian Wang. Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation[J]. Front. Phys. , 2014, 9(2): 226-233.
[14] Fu-qiang HUANG, Chong-yin YANG, Dong-yun WAN. Advanced solar materials for thin-film photovoltaic cells[J]. Front. Phys. , 2011, 6(2): 177-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed