Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2009, Vol. 4 Issue (3) : 297-306    https://doi.org/10.1007/s11467-009-0021-y
REVIEW ARTICLE
Studies on structural defects in carbon nanotubes
Hai-yan HE (何海燕), Bi-cai PAN (潘必才,)
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(1067 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Structural defects in carbon nanotubes (CNTs) have been paid much attention, because they influence the properties of the CNTs to some extent. Among various defects in CNTs, both single vacancies and Stone–Wales (SW) defects are the simple and common ones. In this paper, we review the progress of research in these two kinds of defects in CNTs. For single vacancies, we first address their different structural features in both zigzag and armchair CNTs, and their stabilities in CNTs with different sizes and different symmetries systematically. The presence of the single vacancies in CNTs not only influences the electronic structures of the systems, but also affects the vibrational properties of the tubes. Nevertheless, being active chemically, the single vacancies in the tubes prefer to interact with adsorbates nearby, of which the interaction of the defects with hydrogen atom, hydrogen molecule and some small hydrocarbon radicals (–CH, –CH2 and –CH3) are discussed. The former is associated with H storage and the latter is of merit to improve the local structure of the defect in a CNT. For the Stone–Wales defect, we mainly focus on its stability in various CNTs. The influence of the SW defects on the conductance of CNTs and the identification of such a defect in CNT is described in brief.

Keywords nanotubes      defects      adsorption      theoretical calculation     
Corresponding Author(s): null,Email:bcpan@ustc.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Hai-yan HE (何海燕),Bi-cai PAN (潘必才). Studies on structural defects in carbon nanotubes[J]. Front. Phys. , 2009, 4(3): 297-306.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0021-y
https://academic.hep.com.cn/fop/EN/Y2009/V4/I3/297
1 S. Iijima, Nature (London) , 1991, 354: 56
doi: 10.1038/354056a0
2 H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Ccbert, and R. E. Smalley, Nature(London) , 1996, 384: 147
doi: 10.1038/384147a0
3 P. Kim and C. M. Lieber, Science , 1999, 286: 2148
doi: 10.1126/science.286.5447.2148
4 P. Pancharal, Z. L. Wang, D. Ugarte, and W. de Heer, Science , 1999, 283: 1513
doi: 10.1126/science.283.5407.1513
5 S. J. Tans, R. M. Verschueren, and C. Dekker, Nature (London) , 1999, 393: 49
6 R. S. Friedman, N. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, Nature (London) , 2005, 434: 1085
doi: 10.1038/4341085a
7 M. S. Dresselhaus and P. C. Eklund, Adv. Phys. , 2000, 49: 705
doi: 10.1080/000187300413184
8 A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. W. Williams, M. Menon, K. R. Subbaswamy, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science , 1997, 275: 187
doi: 10.1126/science.275.5297.187
9 A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, and Y. Nishina, Phys. Rev. Lett. , 1997, 78: 4434
doi: 10.1103/PhysRevLett.78.4434
10 J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, and J. E. Fischer, Science , 2000, 289: 1730
doi: 10.1126/science.289.5485.1730
11 R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. , 1993, 209: 77
doi: 10.1016/0009-2614(93)87205-H
12 D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, Jr. J. Liu, and R. E. Smalley, Chem. Phys. Lett. , 2000, 324: 213
doi: 10.1016/S0009-2614(00)00526-1
13 M. Volpe and F. Cleri, Chem. Phys. Lett. , 2003, 371: 476
doi: 10.1016/S0009-2614(03)00271-9
14 O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev. B , 2002, 66: 121401
doi: 10.1103/PhysRevB.66.121401
15 J. C. Charlier, T. W. Ebbesen, and Ph. Lambin, Phys. Rev. B , 1996, 53: 11108
doi: 10.1103/PhysRevB.53.11108
16 P. M. Ajayan, V. Ravikumar, and J. C. Charlier, Phys. Rev. Lett. , 1998, 81: 1437
doi: 10.1103/PhysRevLett.81.1437
17 A. J. Lu and B. C. Pan, Phys. Rev. Lett. , 2004, 92: 105504
doi: 10.1103/PhysRevLett.92.105504
18 A. V. Krasheninnikov, K. Nordlund, M. Sirvio, E. Salonen, and J. Keinonen, Phys. Rev. B , 2001, 63: 245405
doi: 10.1103/PhysRevB.63.245405
19 V. H. Crespi, M. L. Cohen, and A. Rubio, Phys. Rev. Lett. , 1997, 79: 2093
doi: 10.1103/PhysRevLett.79.2093
20 V. H. Crespi, N. G. Chopra, M. L. Cohen, A. Zettle, and S. G. Louie, Phys. Rev. B , 1996, 54: 5927
doi: 10.1103/PhysRevB.54.5927
21 A. Hansson, M. Paulsson, and S. Stafstrom, Phys. Rev. B , 2000, 62: 7639
doi: 10.1103/PhysRevB.62.7639
22 Y. F. Zhu, T. Yi, B. Zheng, and L. L. Cao, Appl. Surf. Sci. , 1999, 137: 83
doi: 10.1016/S0169-4332(98)00372-9
23 M. Terrones, H. Terrones, F. Banhart, J. C. Charlier, and P. M. Ajayan, Science , 2000, 288: 1226
doi: 10.1126/science.288.5469.1226
24 J. Rossato, R. J. Baierle, A. Fazzio, and R. Mota, Nano Lett. , 2005, 5: 197
doi: 10.1021/nl048226d
25 B. C. Pan, W. S. Yang, and J. L. Yang, Phys. Rev. B , 2000, 62: 12652
doi: 10.1103/PhysRevB.62.12652
26 S. Lee, G. Kim, H. Kim, B. Y. Choi, J. Lee, B. W. Jeong, J. Ihm, Y. Kuk, and S. J. Kahng, Phys. Rev. Lett. , 2005, 95: 166402
doi: 10.1103/PhysRevLett.95.166402
27 S. L. Zhang, S. L. Mielke, R. Khare, D. Troya, R. S. Ruoff, G. C. Schatz, and T. Belytschko, Phys. Rev. B , 2005, 71: 115403
doi: 10.1103/PhysRevB.71.115403
28 J. Han, M. P. Anantram, R. L. Jaffe, J. Kong, and H. Dai, Phys. Rev. B , 1998, 57: 14983
doi: 10.1103/PhysRevB.57.14983
29 D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. De vita, and R. Car, Phys. Rev. Lett. , 1997, 78: 2811
doi: 10.1103/PhysRevLett.78.2811
30 M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B , 1998, 57: R4277
doi: 10.1103/PhysRevB.57.R4277
31 M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. Lett. , 1998, 81: 4656
doi: 10.1103/PhysRevLett.81.4656
32 V. H. Crespi, M. L. Cohen, and A. Rubio, Phys. Rev. Lett. , 1997, 79: 2093
doi: 10.1103/PhysRevLett.79.2093
33 L. Chico, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B , 1996, 54: 2600
doi: 10.1103/PhysRevB.54.2600
34 A. Rubio, Appl. Phys. A: Mater. Sci. Process , 1999, 68: 275
doi: 10.1007/s003390050888
35 L. G. Bulusheva, A. V. Okotrub, and D. A. Romanov, J. Phys. Chem. A , 1998, 102: 975
doi: 10.1021/jp972300h
36 H. Y. He, and B. C. Pan, Phys. Rev. B , 2008, 77: 073410
doi: 10.1103/PhysRevB.77.073410
37 D. Sanchez-Portal, P. Ordejon, E. Artacho, and J. M. Soler, Int. J. Quantum Chem. , 1997, 65: 453
doi: 10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V
38 N. Troullier and J. L. Martins, Phys. Rev. B , 1991, 43: 1993
doi: 10.1103/PhysRevB.43.1993
39 J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter , 2002, 14: 2745, and references therein
doi: 10.1088/0953-8984/14/11/302
40 M. T. Yin and M. L. Cohen, Phys. Rev. B , 1982, 26: 3259
doi: 10.1103/PhysRevB.26.3259
41 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. , 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
42 S. Guha, J. Menendez, J. B. Page, and G. B. Adams, Phys. Rev. B , 1996, 53: 13106
doi: 10.1103/PhysRevB.53.13106
43 R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B , 1998, 57: 4145
doi: 10.1103/PhysRevB.57.4145
44 K. Tada, S. Furuya, and K. Watanabe, Phys. Rev. B , 2001, 63: 155405
doi: 10.1103/PhysRevB.63.155405
45 T. Yildirim, O. Gulseren, and S. Ciraci, Phys. Rev. B , 2001, 64: 075404
doi: 10.1103/PhysRevB.64.075404
46 S. M. Lee, K. Hyeok, Y. H. Lee, G. Seifert, and T. Frauenheim, J. Am. Chem. Soc. , 2001, 123: 5059
doi: 10.1021/ja003751+
47 J. S. Arellano, L. M. Molina, A. Rubio, M. J. Lopez, and J. A. Alonso, J. Chem. Phys. , 2002, 117: 2281
doi: 10.1063/1.1488595
48 S. P. Chan, G. Chen, X. G. Gong, and Z. F. Liu, Phys. Rev. Lett. , 2001, 87: 205502
doi: 10.1103/PhysRevLett.87.205502
49 M. Volpe and F. Cleri, Chem. Phys. Lett. , 2003, 371: 476
doi: 10.1016/S0009-2614(03)00271-9
50 K. A. Williams and P. C. Eklund, Chem. Phys. Lett. , 2000, 320: 352
doi: 10.1016/S0009-2614(00)00225-6
51 M. Shiraishi, T. Takenobu, and M. Ata, Chem. Phys. Lett. , 2003, 367: 633
doi: 10.1016/S0009-2614(02)01781-5
52 J. J. Zhao, A. Buldum, J. Han, and J. P. Lu, Nanotechnology , 2002, 13: 195
doi: 10.1088/0957-4484/13/2/312
53 Y. C. Ma, Y. Y. Xia, M. W. Zhao, and N. M. Ying, Chem. Phys. Lett. , 2002, 357: 97
doi: 10.1016/S0009-2614(02)00448-7
54 V. V. Simonyan, P. Diep, and J. K. Johnson, J. Chem. Phys. , 1999, 111: 9778
doi: 10.1063/1.480313
55 M. Boustimi, J. Baudon, P. Candori, and J. Robert, Phys. Rev. B , 2002, 65: 155402
doi: 10.1103/PhysRevB.65.155402
56 A. J. Lu and B. C. Pan, Phys. Rev. B , 2005, 71: 165416
doi: 10.1103/PhysRevB.71.165416
57 R. L. Zhou, H. Y. He, and B. C. Pan, Phys. Rev. B , 2007, 75: 113401
doi: 10.1103/PhysRevB.75.113401
58 H. Y. He and B. C. Pan, Physica E , 2008, 40: 542
doi: 10.1016/j.physe.2007.08.015
59 H. Y. He and B. C. Pan, J. Phys. Chem. C , 2008, 112: 18876
60 T. Sato, S. Kitamura, and M. Iwatsuki, J. Vac. Sci. Technol. A , 2000, 18: 960
doi: 10.1116/1.582283
61 H. M. Branz and S. B. Zhang, Mat. Res. Soc. Symp. , 2001, 664: A13.3.1
62 P. H. Zhang, P. E. Lammert, and V. H. Crespi, Phys. Rev. Lett. , 1998, 81: 5346
doi: 10.1103/PhysRevLett.81.5346
63 V. H. Crespi, Phys. Rev. Lett. , 1999, 82: 2908
doi: 10.1103/PhysRevLett.82.2908
64 M. Yoon, S. Han, G. Kim, S. Lee, S. Berber, E. Zosawa, J. Ihm, M. Terrones, F. Banhart, J. C. Charlier, N. Grobert, H. Terrones, P. M. Ajayan, and D. Tomanek, Phys. Rev. Lett. , 2004, 92: 075504
doi: 10.1103/PhysRevLett.92.075504
65 M. Ouyang, J. L. Huang, C. L. Cheung, and C. M. Lieber, Science , 2001, 291: 97
doi: 10.1126/science.291.5501.97
66 H. J. Choi, J. Ihm, S. G. Louie, M. L. Cohen, Phys. Rev. Lett. , 2000, 84: 2917
doi: 10.1103/PhysRevLett.84.2917
67 H. T. Yang, L. F. Yang, J. W. Chen, and J. M. Dong, Phys. Lett. A , 2004, 325: 287
doi: 10.1016/j.physleta.2004.03.051
68 Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, and D. Tomanek, Phys. Rev. B , 2004, 69: 121413(R)
doi: 10.1103/PhysRevB.69.121413
[1] Xiao-Dong Zhang, Kang Liu, Jun-Wei Fu, Hong-Mei Li, Hao Pan, Jun-Hua Hu, Min Liu. Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products[J]. Front. Phys. , 2021, 16(6): 63500-.
[2] Yunliang Liu, Peiji Deng, Ruqiang Wu, Ramadan A. Geioushy, Yaxi Li, Yixian Liu, Fengling Zhou, Haitao Li, Chenghua Sun. BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction[J]. Front. Phys. , 2021, 16(5): 53503-.
[3] Chen Yang, Ying Chen, Dan Liu, Jinfeng Wang, Cheng Chen, Jiemin Wang, Ye Fan, Shaoming Huang, Weiwei Lei. Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption[J]. Front. Phys. , 2018, 13(4): 138101-.
[4] Zhong Li, Jia-Dan Li, Lin Zhuang, Rui-Jiang Hong. Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification[J]. Front. Phys. , 2017, 12(5): 128103-.
[5] Juan Ren,Ning-Chao Zhang,Peng Wang,Chao Ning,Hong Zhang,Xiao-Juan Peng. Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs[J]. Front. Phys. , 2016, 11(2): 118101-.
[6] Feng-Bin Liu (刘峰斌), Jing-Lin Li (李景林), Wen-Bin Chen (陈文彬), Yan Cui (崔岩), Zhi-Wei Jiao (焦志伟), Hong-Juan Yan (阎红娟), Min Qu (屈敏), Jie-Jian Di (狄杰建). Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study[J]. Front. Phys. , 2016, 11(1): 116804-.
[7] Qiu Tong(邱桐),Huang Ji-Ping(黄吉平). Unprecedentedly rapid transport of single-file rolling water molecules[J]. Front. Phys. , 2015, 10(5): 106102-.
[8] Xiao-Fei Li, Yi Luo. Conductivity of carbon-based molecular junctions from ab-initio methods[J]. Front. Phys. , 2014, 9(6): 748-759.
[9] Reshef Tenne. Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles[J]. Front. Phys. , 2014, 9(3): 370-377.
[10] Xiao-Dong Li, Hong Zhang, Yong-Jian Tang, Chao-Yang Wang. Adsorption and separation of methane/hydrogen in octaphenylsilsesquioxane based covalently-linked organic-inorganic hybrid framework[J]. Front. Phys. , 2012, 7(4): 453-460.
[11] Shun-li Yue, Hong Zhang. First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs[J]. Front. Phys. , 2012, 7(3): 353-359.
[12] Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces[J]. Front. Phys. , 2011, 6(3): 294-308.
[13] Di-hua WU (吴迪华), Zhen ZHOU (周震). Recent progress of computational investigation on anode materials in Li ion batteries[J]. Front. Phys. , 2011, 6(2): 197-203.
[14] Hong ZHANG, Xiao-dong LI, Yong-jian TANG. DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2)[J]. Front. Phys. , 2011, 6(2): 231-235.
[15] Guang-cun SHAN (单光存), Wei HUANG (黄维), . Energy band and band-gap properties of deformed single-walled silicon nanotubes[J]. Front. Phys. , 2010, 5(2): 183-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed