|
|
|
Single-electron tunneling and Coulomb blockade in carbon-based quantum dots |
Wei FAN (樊巍)1,2, Rui-qin ZHANG (张瑞勤)1,3( ) |
| 1. Nano-organic Photoelectronic Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100190, China; 3. Center of Super-diamond and Advanced Films and Department of Physics & Materials Science, City University of Hong Kong, Hong Kong Special Administrative Region, China |
|
|
|
|
Abstract Single-electron tunneling (SET) and Coulomb blockade (CB) phenomena have been widely observed in nanoscaled electronics and have received intense attention around the world. In the past few years, we have studied SET in carbon nanotube fragments and fullerenes by applying the so-called “Orthodox” theory [28]. As outlined in this review article, we investigated the single-electron charging and discharging process via current-voltage characteristics, gate effect, and electronic structure-related factors. Because the investigated geometric structures are three-dimensionally confined, resulting in a discrete spectrum of energy levels resembling the property of quantum dots, we evidenced the CB and Coulomb staircases in these structures. These nanostructures are sufficiently small that introducing even a single electron is sufficient to dramatically change the transport properties as a result of the charging energy associated with this extra electron. We found that the Coulomb staircases occur in the I-V characteristics only when the width of the left barrier junction is smaller than that of the right barrier junction. In this case, the transmission coefficient of the emitter junction is larger than that of the collector junction; also, occupied levels enter the bias window, thereby enhancing the tunneling extensively.
|
| Keywords
single-electron tunneling (SET)
Coulomb blockade (CB)
Coulomb staircase
carbon nanotube (CNT)
fullerene
Orthodox theory
|
|
Corresponding Author(s):
null,Email:aprqz@cityu.edu.hk
|
|
Issue Date: 05 September 2009
|
|
| 1 |
M. A. Reed, J. N. Randall, R. J. Aggarwall, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Phys. Rev. Lett. , 1998, 60: 535 doi: 10.1103/PhysRevLett.60.535
|
| 2 |
J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antonadis, Phys. Rev. Lett. , 1989, 62: 583 doi: 10.1103/PhysRevLett.62.583
|
| 3 |
S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Phys. Rev. Lett. , 1996, 77: 3613 doi: 10.1103/PhysRevLett.77.3613
|
| 4 |
L. P. Kouwenhoven and P. L. McEuen, in: Nano-Science and Technology, edited by G. Timp, AIP Press , 1997
|
| 5 |
M. H. Devoret, D. Esteve, and C. Urbina, Nature , 1992, 360: 547 doi: 10.1038/360547a0
|
| 6 |
R. C. Ashoori, Nature , 1996, 379: 413 doi: 10.1038/379413a0
|
| 7 |
K. Mullen, E. Ben Jacob, R.C. Jaklevic, and Z. Schuss, Phys. Rev. B , 1988, 37: 98 doi: 10.1103/PhysRevB.37.98
|
| 8 |
T. A. Fulton and D. J. Dolan, Phys. Rev. Lett. , 1987, 59: 109 doi: 10.1103/PhysRevLett.59.109
|
| 9 |
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. , 1982, 49: 57 doi: 10.1103/PhysRevLett.49.57
|
| 10 |
C. J. Chen, Introduction to Scanning Tunneling Microscopy, New York: Oxford University Press, 1993
|
| 11 |
T.W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature (London) , 1998, 391: 62 doi: 10.1038/34145
|
| 12 |
J. G. Hou, J. L. Yang, H. Q. Wang, Q. X. Li, C. G. Zeng, L. F. Yuan, B. Wang, D. M. Chen, and Q. S. Zhu, Nature (London) , 2001, 409: 304 doi: 10.1038/35053163
|
| 13 |
A. E. Hanna and M. Tinkham, Phys. Rev. B , 1991, 44: 5919 doi: 10.1103/PhysRevB.44.5919
|
| 14 |
W. H. Green, S. M. Gorun, G. Fitzgerald, P. W. Fowler, A. Ceulemans, and B. C. Teca, J. Chem. Phys. , 1996, 100: 14892 doi: 10.1021/jp960689n
|
| 15 |
B. Li, C. Zeng, J. Zhao, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. , 2006, 124: 064709 doi: 10.1063/1.2163333
|
| 16 |
C. Sch?nenberger, H. van Houten, and H. C. Donkersloot, Europhys. Lett. , 1992, 20: 249 doi: 10.1209/0295-5075/20/3/010
|
| 17 |
P. J. M. van Bentum, R. T. M. Smokers, and H. van Kempen, Phys. Rev. Lett. , 1988, 60: 2543 doi: 10.1103/PhysRevLett.60.2543
|
| 18 |
R. Wilkins, E. Ben-Jacob, and R. C. Jaklevic, Phys. Rev. Lett. , 1989, 63: 801 doi: 10.1103/PhysRevLett.63.801
|
| 19 |
M. Dorogi, J. Gomez, R. Osifchin, R. P. Andres, and R. Reifenberger, Phys. Rev. B , 1995, 52: 9071 doi: 10.1103/PhysRevB.52.9071
|
| 20 |
D. Porath, Y. Levi, M. Tarabiah, and O. Millo, Phys. Rev. B , 1997, 56: 9829 doi: 10.1103/PhysRevB.56.9829
|
| 21 |
S. W. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, and R. L. Whetten, Science , 1998, 280: 2098 doi: 10.1126/science.280.5372.2098
|
| 22 |
U. Banin, Y. W. Cao, D. Katz, and O. Millo, Nature (London) , 1999, 400: 542 doi: 10.1038/22979
|
| 23 |
J. G. Hou, B. Wang, J. L. Yang, X. R. Wang, H. Q. Wang, Q. S. Zhu, and X. D. Xiao, Phys. Rev. Lett. , 2001, 86: 5321 doi: 10.1103/PhysRevLett.86.5321
|
| 24 |
B. Wang, H. Q. Wang, H. X. Li, C. G. Zeng, J. G. Hou, and X. D. Xiao, Phys. Rev. B , 2001, 63: 035403 doi: 10.1103/PhysRevB.63.035403
|
| 25 |
S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, and W. Ho, Phys. Rev. Lett. , 2004, 93: 236802 doi: 10.1103/PhysRevLett.93.236802
|
| 26 |
W. Fan, R. Q. Zhang, A. R. Rocha, and S. Sanvito, J. Chem. Phys. , 2008, 129: 074710 doi: 10.1063/1.2971176
|
| 27 |
Z. Z. Sun, X. R. Wang, R. Q. Zhang, and S. T. Lee, J. Appl. Phys. , 2008, 103: 103719 doi: 10.1063/1.2936321
|
| 28 |
D. V. Averin and K. K. Likharev, J. Low Temp. Phys. , 1986, 62: 345 doi: 10.1007/BF00683469
|
| 29 |
Y. Q. Feng, R. Q. Zhang, K. S. Chan, H. F. Cheung, and S. T. Lee, Phys. Rev. B , 2002, 66: 045404 doi: 10.1103/PhysRevB.66.045404
|
| 30 |
Y. Q. Feng, R. Q. Zhang, and S. T. Lee, J. Appl. Phys. , 2004, 95: 5729 doi: 10.1063/1.1704851
|
| 31 |
R. Q. Zhang, Y. Q. Feng, S. T. Lee, and C. L. Bai, J. Phys. Chem. B , 2004, 108: 16636 doi: 10.1021/jp047698d
|
| 32 |
C. W. J. Beenakker, Phys. Rev. B , 1991, 44: 1646 doi: 10.1103/PhysRevB.44.1646
|
| 33 |
D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge, UK: Cambridge University Press, 1997
|
| 34 |
A. Selloni, P. Carnevali, E. Tosatti, and C. D. Chen, Phys. Rev. B , 1985, 31: 2602 doi: 10.1103/PhysRevB.31.2602
|
| 35 |
H. W. Ch. Postma, M. Jonge, Z. Yao, and C. Dekker, Phys. Rev. B , 2000, 62: R10653 doi: 10.1103/PhysRevB.62.R10653
|
| 36 |
J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, Nature (London) , 1999, 399: 48 doi: 10.1038/19941
|
| 37 |
M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, Nature (London) , 1999, 397: 598 doi: 10.1038/17569
|
| 38 |
Y. G. Semenov, K. W. Kim, and G. J. Iafrate, Phys. Rev. B , 2007, 75: 045429 doi: 10.1103/PhysRevB.75.045429
|
| 39 |
D. Bulaev, B. Trauzettel, and D. Loss, Phys. Rev. B , 2008, 77: 235301 doi: 10.1103/PhysRevB.77.235301
|
| 40 |
J. Wildoer, L. Venema, A. Rinzler, R. Smalley, and C. Dekker, Nature (London) , 1998, 391: 59 doi: 10.1038/34139
|
| 41 |
A. D. Becke, Phys. Rev. A , 1988, 38: 3098 doi: 10.1103/PhysRevA.38.3098
|
| 42 |
C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B , 1988, 37: 785 doi: 10.1103/PhysRevB.37.785
|
| 43 |
M. J. Frisch, G. W. Trucks, H. B. Schlegel, ., Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA , 1998
|
| 44 |
P. M. Ajayan and S. Iijima, Nature (London) , 1992, 358: 23 doi: 10.1038/358023a0
|
| 45 |
H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, Single Charge Tunneling, edited by H. Grabert and M. H. Devoret, New York: Plenum, 1992
|
| 46 |
D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, and R. E. Smalley, Phys. Rev. Lett. , 1998, 81: 681 doi: 10.1103/PhysRevLett.81.681
|
| 47 |
J. J. Palacios, A. J. Perez-Jimenez, E. Louis, and J. A. Verges, Nanotechnology , 2001, 12: 160 doi: 10.1088/0957-4484/12/2/318
|
| 48 |
A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. , 1992, 69: 1592 doi: 10.1103/PhysRevLett.69.1592
|
| 49 |
M. A. Kastner, Rev. Mod. Phys. , 1992, 64:849 doi: 10.1103/RevModPhys.64.849
|
| 50 |
E. B. Foxman, P. L. McEuen, U. Meirav, N. S. Wingreen, Y. Meir, P. A. Belk, N. R. Belk, and M. A. Kastner, Phys. Rev. B , 1993, 47: 10020 doi: 10.1103/PhysRevB.47.10020
|
| 51 |
G. E. Scuseria, Science , 1996, 271: 942 doi: 10.1126/science.271.5251.942
|
| 52 |
H. Kietzmann, R. Rochow, G. Gantefoer, W. Eberhardt, K. Vietze, G. Seifert, and P. W. Fowler, Phys. Rev. Lett. , 1998, 81: 5378 doi: 10.1103/PhysRevLett.81.5378
|
| 53 |
H. Prinzback, A. Weller, P. Landenberger, F. Wahl, J. Woerth, L. T. Scott, M. Gelmont, D. Olevano, and B. V. Issendorff, Nature , 2000, 407: 60 doi: 10.1038/35024037
|
| 54 |
H. W. Kroto, Nature , 1987, 329: 529 doi: 10.1038/329529a0
|
| 55 |
B. Wang, Y. Zhou, X. Ding, K. Wang, X. Wang, J. Yang, and J. G. Hou, J. Phys. Chem. B , 2006, 110: 24505 doi: 10.1021/jp065069t
|
| 56 |
J. Zhao, C. Zeng, X. Cheng, K. Wang, G. Wang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. Lett. , 2005, 95: 045502 doi: 10.1103/PhysRevLett.95.045502
|
| 57 |
H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature , 2000, 407: 57 doi: 10.1038/35024031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|