Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    0, Vol. Issue () : 307-314    https://doi.org/10.1007/s11467-009-0025-7
REVIEW ARTICLE
Simulation of electronic structure of nanomaterials by central insertion scheme
Bin GAO (高斌)1,2, Jun JIANG (江俊)1, Yi LUO (罗毅)1()
1. Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden; 2. Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Troms?, N-9037 Troms?, Norway
 Download: PDF(714 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An effective central insertion scheme (CIS) that allows to study the electronic structure of nanomaterials at the first principles level is introduced. Taking advantage of advanced numerical methods, such as the implicitly restarted Arnoldi method (IRAM) and spectral transformation, together with efficient parallelization technique, this scheme can provide accurate electronic structures and properties of one-,two-, and three-dimensional nanomaterials with only a fraction of computational time required for conventional quantum chemical calculations. Electronic structures of several nanostructures, such as single-walled carbon nanotubes of sub-100 nm in length, silicon nanoclusters of sub-6.5 nm in diameter and metal doped silicon clusters, calculated at hybrid density functional level are presented.

Keywords nanomaterial      electronic structure      density functional theory      largescale calculations     
Corresponding Author(s): null,Email:luo@theochem.kth.se   
Issue Date: 05 September 2009
 Cite this article:   
Bin GAO (高斌),Jun JIANG (江俊),Yi LUO (罗毅). Simulation of electronic structure of nanomaterials by central insertion scheme[J]. Front. Phys. , 0, (): 307-314.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0025-7
https://academic.hep.com.cn/fop/EN/Y0/V/I/307
1 W. T. Yang, Phys. Rev. Lett. , 1991, 66: 1438
doi: 10.1103/PhysRevLett.66.1438
2 W. T. Yang and T. S. Lee, J. Chem. Phys. , 1995, 103: 5674
doi: 10.1063/1.470549
3 J. Jiang, K. Liu, W. Lu, Y. Luo, J. Chem. Phys. , 2006, 124: 214711
doi: 10.1063/1.2207137
4 C. Yang, Ph D. Thesis, Rice University, 1998, available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1. 49.8963
5 D. C. Sorensen, SIAM J. Matrix Analysis and Applications , 1992, 13: 357
doi: 10.1137/0613025
6 R. B. Lehoucq,D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, 1997, available athttp://www.caam.rice.edu/software/ARPACK/
7 T. Sakurai, H. Tadano, Y. Inadomi, and U. Nagashima, Appl. Num. Anal. Comp. Math. , 2004, 1: 516
doi: 10.1002/anac.200410014
8 B. Gao, J. Jiang, K. Liu, Z. Y. Wu, W. Lu, and Y. Luo, J. Comput. Chem. , 2008, 29: 434
doi: 10.1002/jcc.20799
9 BioNano-LEGO V1.0 is a tool package for central insertion scheme approach written by B. Gao, J. Jiang, K. Liu, and Y. Luo, Royal Institute of Technology, Sweden, 2007
10 B. Gao, J. Jiang, Z. Y. Wu, and Y. Luo, J. Chem. Phys. , 2008, 128: 084707
doi: 10.1063/1.2839294
11 Y. Saad, Numerical Methods for Large Eigenvalue Problems, 1st edition, New York: Halsted Press, 1992
12 S. Iijima, Nature , 1991, 354: 56
doi: 10.1038/354056a0
13 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London: Imperial College Press, 1998
14 L. Yang, M. P. Anantram, J. Han, and J. P. Lu, Phys. Rev. B , 1999, 60: 13874
doi: 10.1103/PhysRevB.60.13874
15 C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett. , 2004, 92: 077402
doi: 10.1103/PhysRevLett.92.077402
16 Y. Akai and S. Saito, Physica E , 2005, 29: 555
doi: 10.1016/j.physe.2005.06.026
17 V. Barone, J. E. Peralta, M. Wert, J. Heyd, and G. E. Scuseria, Nano Lett. , 2005, 5: 1621
doi: 10.1021/nl0506352
18 V. Barone, J. E. Peralta, and G. E. Scuseria, Nano Lett. , 2005, 5: 1830
doi: 10.1021/nl0509733
19 T. Miyake and S. Saito, Phys. Rev. B , 2005, 72: 073404
doi: 10.1103/PhysRevB.72.073404
20 M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science , 2002, 297: 593
doi: 10.1126/science.1072631
21 A. Javey, P. Qi, Q. Wang, and H. Dai, Proc. Natl. Acad. Sci. U.S.A. , 2004, 101: 13408
doi: 10.1073/pnas.0404450101
22 A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett. , 2004, 92: 106804
doi: 10.1103/PhysRevLett.92.106804
23 R. V. Seidel, A. P. Graham, J. Kretz, B. Rajasekharan, G. S. Duesberg, M. Liebau, E. Unger, F. Kreupl, and W. Hoenlein, Nano Lett. , 2005, 5: 147
doi: 10.1021/nl048312d
24 Y. M. Lin, J. Appenzeller, Z. H. Chen, Z. G. Chen, H. M. Cheng, and P. Avouris, IEEE Electron Device Lett. , 2005, 26: 823
25 S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science , 2002, 298: 2361
26 G. Dukovic, F. Wang, D. H. Song, M. Y. Sfeir, T. F. Heinz, and L. E. Brus, Nano Lett. , 2005, 5: 2314
doi: 10.1021/nl0518122
27 F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, Science , 2005, 308: 838
doi: 10.1126/science.1110265
28 V. N. Popov, New J. Phys. , 2004, 6: 1
doi: 10.1088/1367-2630/6/1/017
29 V. N. Popov and L. Henrard, Phys. Rev. B , 2004, 70: 115407
doi: 10.1103/PhysRevB.70.115407
30 M. J. Frisch, G. W. Trucks, H. B. Schlegel, ., Gaussian 03, Revision D. 01, Gaussian, Inc., Wallingford CT , 2004
31 R. B. Weisman and S. M. Bachilo, Nano Lett. , 2003, 3: 1235
doi: 10.1021/nl034428i
32 A. D. Zedtsis, Rev. Adv. Mater. Sci. , 2006, 11: 56
33 G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Science , 1998, 279: 353
doi: 10.1126/science.279.5349.353
34 J. P. Wilcoxon, P. P. Provencio, and G. A. Samara, Phys. Rev. B , 2001, 64: 035417
doi: 10.1103/PhysRevB.64.035417
35 M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. , 1999, 82: 197
doi: 10.1103/PhysRevLett.82.197
36 K. Kim, Phys. Rev. B , 1998, 57: 13072
doi: 10.1103/PhysRevB.57.13072
37 Y. Kanemitsou, Phys. Rev. B , 1994, 49: 16845
doi: 10.1103/PhysRevB.49.16845
38 S. Ogut, J. Chelikowsky, and S. G. Louie, Phys. Rev. Lett. , 1997, 79: 1770
doi: 10.1103/PhysRevLett.79.1770
39 S. Ogut, J. Chelikowsky, and S. G. Louie, Phys. Rev. Lett. , 1998, 80: 3162
doi: 10.1103/PhysRevLett.80.3162
40 F. A. Reboredo, A. Franceschetti, and A. Zunger, Phys. Rev. B , 2000, 61: 13073
doi: 10.1103/PhysRevB.61.13073
41 I. Vasiiev, S. Ogut, and J. Cheliskowsky, Phys. Rev. Lett. , 2001, 86: 1813
doi: 10.1103/PhysRevLett.86.1813
42 G. Nesher, L. Kronik, and J. R. Chelikowsky, Phys. Rev. B , 2005, 71: 035344
doi: 10.1103/PhysRevB.71.035344
43 A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, J. Chem. Phys. , 2002, 117: 6721
doi: 10.1063/1.1504707
44 J. Nayak, R. Mythili, M. Vijayalakshmi, and S. N. Sahu, Physica E , 2004, 24: 227
doi: 10.1016/j.physe.2004.04.035
45 M. A. Malik, P. O’Brien, S. Noragera, and J. Smith, J. Mater. Chem. , 2003, 13: 2591
doi: 10.1039/b305860n
[1] Hui Ding, Xiao-Hong Li, Rui-Zhou Zhang, Hong-Ling Cui. Strain-tunable electronic properties and quantum capacitance of ScHfCO2 MXene as supercapacitor electrodes[J]. Front. Phys. , 2025, 20(1): 14211-.
[2] Jiangtong Su, Xiaoqi Hou, Ning Dai, Yang Li. Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications[J]. Front. Phys. , 2024, 19(6): 63501-.
[3] B. Li, D. Vretenar, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng. Generalized time-dependent generator coordinate method for induced fission dynamics[J]. Front. Phys. , 2024, 19(4): 44201-.
[4] Lin Ju, Junxian Liu, Minghui Wang, Shenbo Yang, Shuli Liu. Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy[J]. Front. Phys. , 2024, 19(4): 43208-.
[5] Fan-Ying Wu, Qi-Yi Wu, Chen Zhang, Yang Luo, Xiangqi Liu, Yuan-Feng Xu, Dong-Hui Lu, Makoto Hashimoto, Hao Liu, Yin-Zou Zhao, Jiao-Jiao Song, Ya-Hua Yuan, Hai-Yun Liu, Jun He, Yu-Xia Duan, Yan-Feng Guo, Jian-Qiao Meng. Itinerant to relocalized transition of f electrons in the Kondo insulator CeRu4Sn6[J]. Front. Phys. , 2023, 18(5): 53304-.
[6] Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan, Jinlan Wang. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer[J]. Front. Phys. , 2023, 18(4): 43304-.
[7] Qingyun Zhou, Yusheng Hou, Tianshu Lai. Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure[J]. Front. Phys. , 2023, 18(2): 23301-.
[8] Weibin Zhang, Woochul Yang, Yingkai Liu, Zhiyong Liu, Fuchun Zhang. Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst[J]. Front. Phys. , 2022, 17(6): 63509-.
[9] Mingyun Huang, Xingxing Jiang, Yueshao Zheng, Zhengwei Xu, Xiong-Xiong Xue, Keqiu Chen, Yexin Feng. Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties[J]. Front. Phys. , 2022, 17(5): 53504-.
[10] Xiao-Dong Zhang, Kang Liu, Jun-Wei Fu, Hong-Mei Li, Hao Pan, Jun-Hua Hu, Min Liu. Pseudo-copper Ni–Zn alloy catalysts for carbon dioxide reduction to C2 products[J]. Front. Phys. , 2021, 16(6): 63500-.
[11] Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506-.
[12] Zhaobo Zhou, Shijun Yuan, Jinlan Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures[J]. Front. Phys. , 2021, 16(4): 43203-.
[13] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[14] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[15] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed