Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2009, Vol. 4 Issue (2) : 179-189    https://doi.org/10.1007/s11467-009-0045-3
REVIEW ARTICLE
Cold atom interferometers and their applications in precision measurements
Jin WANG (王谨)1,2, Lin ZHOU (周林)1,2,3, Run-bing LI (李润兵)1,2,3, Min LIU (刘敏)1,2, Ming-sheng ZHAN (詹明生)1,2()
1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China; 3. Graduate School, Chinese Academy of Sciences, Beijing 100080, China
 Download: PDF(1852 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Experimental realization of cold 85Rb atom interferometers and their applications in precision measurements are reported in this paper. Mach–Zehnder and Ramsey–Bordètype interferometers were demonstrated. Detailed descriptions of the interferometers are given including manipulation of cold atoms, Rabi oscillation, stimulated Raman transitions, and optical pumping. As an example of using atom interferometers in precision measurements, the quadratic Zeeman shift of hyperfine sublevels of 85Rb was determined.

Keywords atom interferometer      cold atom      precision measurement     
Corresponding Author(s): Ming-sheng ZHAN (詹明生),Email:mszhan@wipm.ac.cn   
Issue Date: 05 June 2009
 Cite this article:   
Jin WANG (王谨),Lin ZHOU (周林),Run-bing LI (李润兵), et al. Cold atom interferometers and their applications in precision measurements[J]. Front. Phys. , 2009, 4(2): 179-189.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0045-3
https://academic.hep.com.cn/fop/EN/Y2009/V4/I2/179
1 I. Rabi, J. Sacharias, S. Millman, and P. Kusch, Phys. Rev. , 1938, 53: 318
doi: 10.1103/PhysRev.53.318
2 N. Ramsey, Phys. Rev. , 1949, 76: 996
doi: 10.1103/PhysRev.76.996
3 R. Delhuille, C. Champenois, M. Buchner, L. Jozefowski, C. Rizzo, G. Trenec, and J. Vigue, App. Phys. B , 2002, 74: 489
doi: 10.1007/s003400200840
4 M. A. Kasevich and S. Chu, Phys. Rev. Lett. , 1991, 67: 181
doi: 10.1103/PhysRevLett.67.181
5 A. Peters, K. Y. Chung, and S. Chu, Nature , 1999, 440: 849
6 T. L. Gustavson, P. Bouyer, and M. Kasevich, Phys. Rev. Lett. , 1997, 78: 2046
doi: 10.1103/PhysRevLett.78.2046
7 T. L. Gustavson, A. Landragin, and M. Kasevich, Class. Quantum Grav. , 2000, 17: 2385
doi: 10.1088/0264-9381/17/12/311
8 B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, and A. Virdis, Phys. Rev. Lett. , 2006, 97: 010402
doi: 10.1103/PhysRevLett.97.010402
9 M. C. Lee and U. E. Israelsson, Physica B , 2003, 329: 1649
doi: 10.1016/S0921-4526(02)02441-9
10 W. M. Liu, B. Wu, and Q. Niu, Phys. Rev. Lett. , 2000, 84: 2294
doi: 10.1103/PhysRevLett.84.2294
11 W. M. Liu, W. B. Fan, W. M. Zheng, J. Q. Liang, and S. T. Chui, Phys. Rev. Lett. , 2002, 88: 170408
doi: 10.1103/PhysRevLett.88.170408
12 H. W. Xiong, S. J. Liu, W. P. Zhang, and M. S. Zhan, Phys. Rev. Lett. , 2005, 95: 120401
doi: 10.1103/PhysRevLett.95.120401
13 K. Li, L. Deng, E. W. Hagley, M. G. Payne, and M. S. Zhan, Phys. Rev. Lett. , 2008, 101: 250401
doi: 10.1103/PhysRevLett.101.250401
14 P. Wang, R. B. Li, H. Yan, J. Wang, and M. S. Zhan, Chin. Phys. Lett. , 2007, 24: 27
doi: 10.1088/0256-307X/24/2/065
15 M. S. Zhan, K. Li, P. Wang, L. B. Kong, X. R. Wang, R. B. Li, X. H. Tu, L. X. He, J. Wang, and B. L. Lu, J. Phys.: Conference Series , 2007, 80: 012047
16 R. B. Li, P. Wang, H. Yan, J. Wang, and M. S. Zhan, Phys. Rev. A , 2008, 77: 033425
doi: 10.1103/PhysRevA.77.033425
17 R. B. Li, L. Zhou, J. Wang, and M. S. Zhan, Opt. Commun. , 2009, 282: 1340
doi: 10.1016/j.optcom.2008.12.034
18 J. Wang, X. J. Liu, J. M. Li, K. J. Jiang, and M. S. Zhan, Chin. J. Quantum Electronics , 2000, 17: 44 (in Chinese)
19 K. J. Jiang, J. Wang, X. H. Tu, M. He, and M. S. Zhan, Chin. Opt. Lett. , 2003, 1: 377
20 K. J. Jiang, K. Li, J. Wang, and M. S. Zhan, Chin. Phys. Lett. , 2005, 22: 324
doi: 10.1088/0256-307X/22/2/016
21 J. M. McGuirk, M. J. Snadden, M. A. Kasevich, Phy. Rev. Lett. , 2000, 85: 4498
doi: 10.1103/PhysRevLett.85.4498
22 P. Bouyer, T. L. Gustavson, K. G. Haritos, and M. A. Kasevich, Opt. Lett. , 1996, 21: 1502
doi: 10.1364/OL.21.001502
23 M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. , 1991, 66: 2297
doi: 10.1103/PhysRevLett.66.2297
24 K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, Phys. Rev. A , 1992, 45: 342
doi: 10.1103/PhysRevA.45.342
25 M. Kasevich and S. Chu, Appl. Phys. B: Photophys. Laser Chem. , 1992, 54: 321
doi: 10.1007/BF00325375
26 J. E. Thomas, P. R. Hemmer, and S. Ezekiel, Phys. Rev. Lett. , 1982, 48: 867
doi: 10.1103/PhysRevLett.48.867
27 P. R. Hemmer, G. P. Ontai, and S. Ezekiel, J. Opt. Soc. Am. B , 1986, 3: 219
doi: 10.1364/JOSAB.3.000219
28 M. Kajita, Y. Li, K. Matsubara, K. Hayasaka, and M. Hosokawa, Phys. Rev. A , 2005, 72: 043404
doi: 10.1103/PhysRevA.72.043404
29 M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. Blatt, T. Z. Willette, S. M. Foreman, and J. Ye, Phys. Rev. A , 2007, 76: 022510
doi: 10.1103/PhysRevA.76.022510
30 J. Vanier, Appl. Phys. B: Laser and Optics , 2005, 81: 421
doi: 10.1007/s00340-005-1905-3
31 P. L. Bender, E. C. Beaty, and A. R. Chi, Phys. Rev. Lett. , 1958, 1: 311
doi: 10.1103/PhysRevLett.1.311
32 S. Penselin, T. Moran, and V. W. Cohen, Phys. Rev. , 1962, 127: 524
doi: 10.1103/PhysRev.127.524
33 E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. , 1977, 49: 31
doi: 10.1103/RevModPhys.49.31
[1] Qian Liang, Tao Chen, Wen-Hao Bu, Yu-He Zhang, Bo Yan. Laser cooling with adiabatic passage for type-II transitions[J]. Front. Phys. , 2021, 16(3): 32501-.
[2] Yong Xu. Topological gapless matters in three-dimensional ultracold atomic gases[J]. Front. Phys. , 2019, 14(4): 43402-.
[3] Junbo Zhu (竺俊博),Zhu Chen (陈竹),Biao Wu (吴飙). Construction of maximally localized Wannier functions[J]. Front. Phys. , 2017, 12(5): 127102-.
[4] Hongwei Xiong. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium[J]. Front. Phys. , 2015, 10(4): 100401-.
[5] Dan-wei Zhang (张丹伟), Zi-dan Wang (汪子丹), Shi-liang Zhu (朱诗亮). Relativistic quantum effects of Dirac particles simulated by ultracold atoms[J]. Front. Phys. , 2012, 7(1): 31-53.
[6] Andrey R. Kolovsky. Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices[J]. Front. Phys. , 2012, 7(1): 3-7.
[7] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed