Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2009, Vol. 4 Issue (3) : 356-366    https://doi.org/10.1007/s11467-009-0050-6
REVIEW ARTICLE
Hydrogen adsorption and desorption on the Pt and Pd subnano clusters – a review
Liang CHEN (陈亮)1,3(), Cheng-gang ZHOU (周成冈)2,3, Jin-ping WU (吴金平)2,3, Han-song CHENG (程寒松)2,3
1. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 2. Institute of Theoretical Chemistry and Computational Materials Science, China University of Geosciences, Wuhan 430074, China; 3. Air Products and Chemicals, Inc. 7201 Hamilton Boulevard, Allentown, PA 18195, USA
 Download: PDF(2467 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this review, we present our recent first principles studies on the sequential H2 dissociative chemisorption and H desorption on the Ptn and Pdn clusters (n=2-9, 13). Upon full saturation by H atoms, the calculated H2 dissociative chemisorption energy and H desorption energy on Pt13 and Pd13 clusters are similar to the corresponding values on smaller close-packed clusters. Indeed, the catalytic performances of these subnano clusters do not vary significantly with the particle sizes or shapes. Instead, they are dependent on the surface metal atoms which can be accessed by H atoms. In addition to the coverage dependency of the H2dissociative chemisorption and H sequential desorption energies, the phase transition of both Pt13 and Pd13from the icosahedral to fcc-like structures at certain H coverage was also investigated.

Keywords hydrogen adsorption      density functional theory      metal clusters      catalysis     
Corresponding Author(s): null,Email:chenliang@nimte.ac.cn   
Issue Date: 05 September 2009
 Cite this article:   
Liang CHEN (陈亮),Cheng-gang ZHOU (周成冈),Jin-ping WU (吴金平), et al. Hydrogen adsorption and desorption on the Pt and Pd subnano clusters – a review[J]. Front. Phys. , 2009, 4(3): 356-366.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0050-6
https://academic.hep.com.cn/fop/EN/Y2009/V4/I3/356
1 B. C. H. Steele, Nature (London) , 1999, 400: 619
doi: 10.1038/23144
2 S. F. Parker, C. D. Frost, M. Telling, P. Albers, M. Lopez, and K. Seitz, Catal. Today , 2006, 114: 418
doi: 10.1016/j.cattod.2006.02.043
3 P. S. Cremer, X. Su, Y. R. Shen, and G. A. Somorjai, J. Am. Chem. Soc. , 1996, 118: 2942
doi: 10.1021/ja952800t
4 Y. Li and R. T. Yang, J. Am. Chem. Soc. , 2006, 128: 726
doi: 10.1021/ja056831s
5 Y. Li and R. T. Yang, J. Am. Chem. Soc. , 2006, 128: 8136
doi: 10.1021/ja061681m
6 T. E. Felter, S. M. Foiles, M. S. Daw, and R. H. Stulen, Surf. Sci. Lett. , 1986, 171: 379
7 S. Horch, H. T. Lorensen, S. Helveg, E. L?gsgaard, I. Stensgaard, W. Jacobsen, J. K. N?skov, and F. Besenbacher, Nature (London) , 1999, 398: 134
doi: 10.1038/18185
8 S. C. Badescu, P. Salo, T. Ala-Nissila, S. C. Ying, K. Jacobi, Y. Wang, K. Bedurftig, and G. Ertl, Phys. Rev. Lett. , 2002, 88: 136101
doi: 10.1103/PhysRevLett.88.136101
9 P. Légaré, Surf. Sci. , 2004, 559: 169
doi: 10.1016/j.susc.2004.04.013
10 M. K. Oudenhuijzen, J. A. Bokhoven, J. T. Miller, D. E. Ramaker, and D. C. Koningsberger, J. Am. Chem. Soc. , 2005, 127: 1530
doi: 10.1021/ja045286c
11 X. Liu, H. Dilger, R. A., R. A. Eichel, J. Kunstmann, and E. Roduner, J. Phys. Chem. B , 2006, 110: 2013
doi: 10.1021/jp0561874
12 G. Papoian, J. K. N?skov, and R. Hoffmann, J. Am. Chem. Soc. , 2000, 122: 4129
doi: 10.1021/ja993483j
13 D. Godbey and G. A. Somorjai, Surf. Sci. , 1988, 204: 301
doi: 10.1016/0039-6028(88)90215-4
14 K. Christmann, Surf. Sci. Rep. , 1988, 9: 1
doi: 10.1016/0167-5729(88)90009-X
15 B. Hammer and J. K. N?skov, Nature (London) , 1995, 376: 238
doi: 10.1038/376238a0
16 R. A. Olsen, G. J. Kroes, and E. J. Baerends, J. Chem. Phys. , 1999, 111: 11155
doi: 10.1063/1.480473
17 G. W. Watson, R. P. K. Wells, D. J. Willock, and G. J. Hutchings, J. Phys. Chem. B , 2001, 105: 4889
doi: 10.1021/jp002864c
18 K. Nobuhara, H. Kasai, W. Q. Dino, and H. Nakanishi, Surf. Sci. , 2004, 566-568: 703
doi: 10.1016/j.susc.2004.06.003
19 K. Nobuhara, H. Kasai, H. Nakanishi, and A. Okiji, J. Appl. Phys. , 2002, 92: 5704
doi: 10.1063/1.1512965
20 L. Barrio, P. Liu, J. A. Rodriguez, J. M. Campos-Martin, and J. Fierro, J. Chem. Phys. , 2006, 125: 164715
doi: 10.1063/1.2363971
21 Z. P. Liu and P. Hu, J. Am. Chem. Soc. , 2003, 125: 1958
doi: 10.1021/ja0207551
22 X. Q. Gong, A. Selloni, O. Dulub, P. Jacobson, and U. Diebold, J. Am. Chem. Soc. , 2008, 130: 370
doi: 10.1021/ja0773148
23 X. Liu, H. Dilger, R. A. Eichel, J. Kunstmann, and E. Roduner, J. Phys. Chem. B , 2006, 110: 2013
doi: 10.1021/jp0561874
24 Y. Okamoto, Chem. Phys. Lett. , 2006, 429: 209
doi: 10.1016/j.cplett.2006.08.013
25 Y. Okamoto, Chem. Phys. Lett. , 2005, 405: 79
doi: 10.1016/j.cplett.2005.02.018
26 G. E. Gdowski, J. A. Fair, and R. J. Madix, Surf. Sci. , 1983, 127: 541
doi: 10.1016/0039-6028(83)90046-8
27 L. J. Richter and W. Ho, Phys. Rev. B , 1987, 36: 9797
doi: 10.1103/PhysRevB.36.9797
28 C. T. Au, T. J. Zhou, and W. J. Lai, Catal. Lett. , 1999, 62: 147
doi: 10.1023/A:1019019710780
29 N. Watari and S. Ohnishi, J. Chem. Phys. , 1997, 106: 1997
doi: 10.1063/1.473751
30 L. Chen, A. C. Cooper, G. P. Pez, and H. Cheng, J. Phys. Chem. C , 2007, 111: 5514
doi: 10.1021/jp070181s
31 C. Zhou, J. Wu, A. Nie, R. C. Forrey, A. Tachibana, and H. Cheng, J. Phys. Chem. C , 2007, 111: 12773
doi: 10.1021/jp073597e
32 C. Zhou, S. Yao, J. Wu, R. Forrey, L. Chen, A. Tachibana, and H. Cheng, Phys. Chem. Chem. Phys. , 2008, 10: 5445
doi: 10.1039/b804877k
33 W. Dong and J. Hafner, Phys. Rev. B , 1997, 56: 15396
doi: 10.1103/PhysRevB.56.15396
34 J. P. Perdew and Y. Wang, Phys. Rev. B , 1992, 45: 13244
doi: 10.1103/PhysRevB.45.13244
35 T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett. , 1977, 49: 225
doi: 10.1016/0009-2614(77)80574-5
36 F. L. Hirshfeld, Theor. Chim. Acta B , 1977, 44: 129
doi: 10.1007/BF00549096
37 B. Delley, J. Chem. Phys. , 2000, 113: 7756
doi: 10.1063/1.1316015
38 B. Delley, J. Chem. Phys. , 1990, 92: 508
doi: 10.1063/1.458452
39 A. Nie, J. Wu, C. Zhou, S. Yao, C. Luo, R. C. Forrey, and H. Cheng, Int. J. Quantum Chem. , 2007, 107: 219
doi: 10.1002/qua.21011
[1] Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure an hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506-.
[2] Zhaobo Zhou, Shijun Yuan, Jinlan Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures[J]. Front. Phys. , 2021, 16(4): 43203-.
[3] Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials[J]. Front. Phys. , 2021, 16(2): 23201-.
[4] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[5] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[6] Junwei Fu (傅俊伟), Shuandi Wang (王栓娣), Zihua Wang (王自华), Kang Liu (刘康), Huangjingwei Li (李黄经纬), Hui Liu (刘恢), Junhua Hu (胡俊华), Xiaowen Xu (徐效文), Hongmei Li (李红梅), Min Liu (刘敏). Graphitic carbon nitride based single-atom photocatalysts[J]. Front. Phys. , 2020, 15(3): 33201-.
[7] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[8] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[9] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[10] Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules[J]. Front. Phys. , 2019, 14(2): 23604-.
[11] Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory[J]. Front. Phys. , 2018, 13(6): 132109-.
[12] Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis[J]. Front. Phys. , 2018, 13(4): 138118-.
[13] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[14] Ya-Hui Mao, Li-Fu Zhang, Hui-Li Wang, Huan Shan, Xiao-Fang Zhai, Zhen-Peng Hu, Ai-Di Zhao, Bing Wang. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Front. Phys. , 2018, 13(3): 138106-.
[15] Huaze Shen, Mohan Chen, Zhaoru Sun, Limei Xu, Enge Wang, Xifan Wu. Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations[J]. Front. Phys. , 2018, 13(1): 138204-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed