Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2009, Vol. 4 Issue (3) : 420-425    https://doi.org/10.1007/s11467-009-0056-0
RESEARCH ARTICLE
Thermal transport associated with ballistic phonons in asymmetric quantum structures
Zong-liang LIU (刘宗良)1,2, Xiao-yan YU (于晓燕)2, Ke-qiu CHEN (陈克求)2()
1. Department of Physics, Hunan Institute of Humanities, Science and Technology, Loudi 417000, China; 2. Department of Applied Physics, Hunan University, Changsha 410082, China
 Download: PDF(450 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Using the scattering matrix method, we investigate the thermal conductance associated with ballistic phonons at low temperatures in asymmetric quantum structures. The results show that when the structure is an ideal quantum wire, the universal value π2kB2/(3h) can be observed at very low temperatures. However, for asymmetric quantum structure, the thermal conductance is less than the universal value π2kB2/(3h), even at T → 0. The results also show that the thermal conductance is strongly dependent on the transport direction. The rectification effect can be observed in the asymmetric structure and can be adjusted by changing the structural parameters. A brief analysis of these results is given.

Keywords phonon in nanoscale structure      ballistic transport      thermal conductance     
Corresponding Author(s): null,Email:keqiuchen@hnu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Zong-liang LIU (刘宗良),Xiao-yan YU (于晓燕),Ke-qiu CHEN (陈克求). Thermal transport associated with ballistic phonons in asymmetric quantum structures[J]. Front. Phys. , 2009, 4(3): 420-425.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0056-0
https://academic.hep.com.cn/fop/EN/Y2009/V4/I3/420
1 G. Chen, Phys. Rev. B , 1998, 57: 14958
doi: 10.1103/PhysRevB.57.14958
2 W. E. Bies, R. J. Radtke, and H. Ehrenreich, J. Appl. Phys. , 2000, 88: 1498
doi: 10.1063/1.373845
3 M. V. Simkin and G. D. Mahan, Phys. Rev. Lett. , 2000, 84: 927
doi: 10.1103/PhysRevLett.84.927
4 D. Song and G. Chen, Appl. Phys. Lett. , 2004, 84: 687
doi: 10.1063/1.1642753
5 D. Z. A. Chen, A. Narayanaswamy, and G. Chen, Phys. Rev. B , 2005, 72: 155435
doi: 10.1103/PhysRevB.72.155435
6 B. W. Li, L. Wang, and B. B. Hu, Phys. Rev. Lett. , 2002, 88: 223901
doi: 10.1103/PhysRevLett.88.223901
7 B. W. Li, G. Casati, J. Wang, and T. Prosen, Phys. Rev. Lett. , 2004, 92: 254301
doi: 10.1103/PhysRevLett.92.254301
8 J. S. Wang, Phys. Rev. Lett. , 2007, 99: 160601
doi: 10.1103/PhysRevLett.99.160601
9 J. S. Wang, N. Zen, J. Wang, and C. K. Gan, Phys. Rev. B , 2007, 75: 061128
10 B. A. Glavin, Phys. Rev. Lett. , 2001, 86: 4318
doi: 10.1103/PhysRevLett.86.4318
11 J. Zou and A. Balandin, J. Appl. Phys. , 2001, 89: 2932
doi: 10.1063/1.1345515
12 W. Fon, K. C. Schwab, J. M. Worlock, and M. L. Roukes, Phys. Rev. B , 2002, 66: 045302
doi: 10.1103/PhysRevB.66.045302
13 D. Y. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang, and A. Majumdar, Appl. Phys. Lett. , 2003, 83: 2934
doi: 10.1063/1.1616981
14 R. G. Yang, G. Chen, and M. S. Dresselhaus, Phys. Rev B , 2005, 72: 125418
doi: 10.1103/PhysRevB.72.125418
15 O. Chiatti, J. T. Nicholls, Y. Y. Proskuryakov, N. Lumpkin, I. Farrer, and D. A. Ritchie, Phys. Rev. Lett. , 2006, 97: 056601
doi: 10.1103/PhysRevLett.97.056601
16 J. Wang and J. S. Wang, Appl. Phys. Lett. , 2007, 90: 241908
doi: 10.1063/1.2748342
17 C. Guthy, C. Y. Nam, and J. E. Fischer, J. Appl. Phys. , 2008, 103: 064319
doi: 10.1063/1.2894907
18 P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. , 2001, 87: 215502
doi: 10.1103/PhysRevLett.87.215502
19 N. Mingo and D. A. Broido, Phys. Rev. Lett. , 2005, 95: 096105
doi: 10.1103/PhysRevLett.95.096105
20 N. Mingo and D. A. Broido, Nano Lett. , 2005, 5: 1221
doi: 10.1021/nl050714d
21 H. Y. Chiu, V. V. Deshpande, H. W. Ch. Postma, C. N. Lau, C. Miko, L. Forro, and M. Bockrath, Phys. Rev. Lett. , 2005, 95: 226101
doi: 10.1103/PhysRevLett.95.226101
22 J. S. Wang, J. Wang, and N. Zeng, Phys. Rev. B , 2006, 74: 033408
doi: 10.1103/PhysRevB.74.033408
23 J. S. Wang, N. Zeng, J. Wang, and C. K. Gan, Phys. Rev.E , 2007, 75: 061128
doi: 10.1103/PhysRevE.75.061128
24 T. Yamamoto, Y. Nakazawa, and K. Watanabe, New J. Phys. , 2007, 9: 245
doi: 10.1088/1367-2630/9/8/245
25 G. Wu and B. W. Li, Phys. Rev. B , 2007, 76: 85424
doi: 10.1103/PhysRevB.76.085424
26 W. Zhang, N. Mingo, and T. S. Fisher, Phys. Rev. B , 2007, 76: 195429
doi: 10.1103/PhysRevB.76.195429
27 Z. L. Wang, D. W. Tang, X. B. Li, X. H. Zheng, W. G. Zhang, L. X. Zheng, Y. T. Zhu, A. Z. Jin, H. F. Yang, and C. Z. Gu, Appl. Phys. Lett. , 2007, 91: 123119
doi: 10.1063/1.2779850
28 N. MingoD. A. Stewart, D. A. Broido, and D. Srivastava, Phys. Rev. B , 2008, 77: 033418
29 K. Satio, J. Nakamura, and A. Natori, Phys. Rev. B , 2007, 76: 115409
doi: 10.1103/PhysRevB.76.115409
30 M. Morooka, T. Yamamoto, and K. Watanabe, Phys. Rev. B , 2008, 77: 033412
doi: 10.1103/PhysRevB.77.033412
31 J. Zimmermann, P. Pavone, and G. Cuniberti, Phys. Rev. B , 2008, 78: 045410
doi: 10.1103/PhysRevB.78.045410
32 Q. F. Sun, P. Yang, and H. Guo, Phys. Rev. Lett. , 2002, 89: 175901
doi: 10.1103/PhysRevLett.89.175901
33 W. X. Li, K. Q. Chen, W. H. Duan, J. Wu, and B. L. Gu, Appl. Phys. Lett. , 2004, 85: 822
doi: 10.1063/1.1779339
34 F. Xie, K. Q. Chen, Y. G. Wang, Q. Wan, B. S. Zou, and Y. Zhang, J. Appl. Phys. , 2008, 104: 054312
doi: 10.1063/1.2975979
35 L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett. , 1998, 81: 232
doi: 10.1103/PhysRevLett.81.232
36 M. P. Blencowe, Phys. Rev. B , 1999, 59: 4992
doi: 10.1103/PhysRevB.59.4992
37 K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Nature (London) , 2000, 404: 974
doi: 10.1038/35010065
38 M. C. Cross and R. Lifshitz, Phys. Rev. B , 2001, 64: 85324
doi: 10.1103/PhysRevB.64.085324
39 W. X. Li, K. Q. Chen, W. H. Duan, J. Wu, and B. L. Gu, J. Phys. D: Appl. Phys. , 2003, 36: 3027
40 C. M. Chang and M. R. Geller, Phys. Rev. B , 2005, 71: 125304
doi: 10.1103/PhysRevB.71.125304
41 D. H. Santamore and M. C. Cross, Phys. Rev. Lett. , 2001, 87: 115502
doi: 10.1103/PhysRevLett.87.115502
42 D. H. Santamore and M. C. Cross, Phys. Rev. B , 2001, 63: 184306
doi: 10.1103/PhysRevB.63.184306
43 K. Q. Chen, W. X. Li, W. H. Duan, Z. Shuai, and B. L.Gu, Phys. Rev. B , 2005, 72: 045422
doi: 10.1103/PhysRevB.72.045422
44 W. X. Li, K. Q. Chen, W. H. Duan, J. Wu, and B. L. Gu, J. Phys.: Condens. Matter , 2004, 16: 5049
doi: 10.1088/0953-8984/16/28/023
45 W. Q. Huang, K. Q. Chen, Z. Shuai, L. L. Wang, W. Y. Hu, and B. S. Zou, J. Appl. Phys. , 2005, 98: 093524
doi: 10.1063/1.2127122
46 L.M. Tang, L. L. Wang, K. Q. Chen, W. Q. Huang, and B. S. Zou, Appl. Phys. Lett. , 2006, 88: 163505
doi: 10.1063/1.2196054
47 P. Yang, Q. F. Sun, H. Guo, and B. B. Hu, Phys. Rev. B , 2007, 75: 235319
doi: 10.1103/PhysRevB.75.235319
48 X. F. Peng, K. Q. Chen, B. S. Zou, and Y. Zhang, Appl. Phys. Lett. , 2007, 90: 193502
doi: 10.1063/1.2737363
49 F. Xie, K. Q. Chen, Y. G. Wang, and Y. Zhang, J. Appl. Phys. , 2008, 103: 084501
doi: 10.1063/1.2904883
50 B. W. Li, L. Wang, and G. Casati, Phys. Rev. Lett. , 2004, 93: 184301
doi: 10.1103/PhysRevLett.93.184301
51 B. B. Hu, L. Yang, and Y. Zhang, Phys. Rev. Lett. , 2006, 97: 124302
doi: 10.1103/PhysRevLett.97.124302
52 J. P. Eckmann and C. Mejia-Monasterio, Phys. Rev. Lett. , 2006, 97: 094301
doi: 10.1103/PhysRevLett.97.094301
53 Y. Ming, Z. X. Wang, Q. Li, and Z. J. Ding, Appl. Phys. Lett. , 2007, 91: 143508
doi: 10.1063/1.2794799
54 C. W. Chang, D. Okawa, A.Majumdar, and A. Zettl, Science , 2006, 314: 1121
doi: 10.1126/science.1132898
55 K. Graff, Wave Motion in Elastic Solids, New York: Dover, 1991
56 Y. Tanaka, F. Yoshida, and S. Tamura, Phys. Rev. B , 2005, 71: 205308
doi: 10.1103/PhysRevB.71.205308
57 J. S. Wang, J. Wang, and J. T. Lu, Eur. Phys. J. B , 2008, 62: 381
doi: 10.1140/epjb/e2008-00195-8
58 H. Q. Xu, Phys. Rev. B , 1995, 52: 5803
doi: 10.1103/PhysRevB.52.5803
59 H. Q. Xu, Appl. Phys. Lett. , 2002, 80: 853
doi: 10.1063/1.1447316
60 O. Madelung, Semiconductors: Group IV Elements and IIIV Compounds, Berlin: Springer, 1982
[1] Ru HUANG (黄如), Run-sheng WANG (王润声). Investigation of gate-all-around silicon nanowire transistors for ultimately scaled CMOS technology from top–down approach[J]. Front Phys Chin, 2010, 5(4): 414-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed