Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    0, Vol. Issue () : 256-268    https://doi.org/10.1007/s11467-009-0057-z
REVIEW ARTICLE
Exploring at nanoscale from first principles
Qiang FU (付强)1,2, Lan-feng YUAN (袁岚峰)1, Yi LUO (罗毅)1,2, Jin-long YANG (杨金龙)1()
1. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 2. Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
 Download: PDF(951 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Systems at the nanoscale can exhibit distinctive and unexpected properties in electrical, magnetic, mechanical, and chemical aspects. Understanding these properties not only is of importance from the fundamental scientific view but also offers great opportunities for future applications. Theoretical calculations can provide important information to interpret, modify, and predict the novel properties of objects at the nanoscale and therefore play a significant role in the process of exploring the nano world. In this review, six different areas are briefly presented, namely, prediction of new stable structures, modification of properties (especially the electronic structures), design of novel devices for applications, the structures and catalytic effects of clusters, the mechanical and transport properties of gold nanowires, and improvement of materials for hydrogen storage. Based on these examples, we show what can be done and what can be found in the investigations of nanoscale systems with participation of theoretical calculations.

Keywords first-principles calculations      nanostructures      electronic structures      design of novel devices      catalytic effects of clusters      gold nanowires      hydrogen storage     
Corresponding Author(s): null,Email:jlyang@ustc.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Qiang FU (付强),Lan-feng YUAN (袁岚峰),Yi LUO (罗毅), et al. Exploring at nanoscale from first principles[J]. Front. Phys. , 0, (): 256-268.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0057-z
https://academic.hep.com.cn/fop/EN/Y0/V/I/256
1 R. P. Feynman, There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics. Lecture at 1959 APS Meeting. The Archives, California Institute of Technology , see http://www.its. caltech.edu/ feynman/plenty.html, 1959
2 Britannica online encyclopedia article on nanotechnology, see http://www.britannica.com/EBchecked/topic /962484/nanotechnology
3 H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, Nature , 1985, 318: 162
doi: 10.1038/318162a0
4 S. Iijima, Nature , 1991, 354: 56
doi: 10.1038/354056a0
5 M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria, J. A. Pople, , Gaussian 03, Gaussian, Inc., Wallingford CT , 2004
6 G. Kresse and J. Furthmuller, Comput. Mater. Sci. , 1996, 6: 15
doi: 10.1016/0927-0256(96)00008-0
7 G. Kresse and J. Furthmuller, Phys. Rev. B , 1996, 54: 11169
doi: 10.1103/PhysRevB.54.11169
8 J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter , 2002, 14: 2745
doi: 10.1088/0953-8984/14/11/302
9 G. T. Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. Van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. , 2001, 22: 931
doi: 10.1002/jcc.1056
10 B. L. Zhang, C. Z. Wang, K. M. Ho, C. H. Xu, and C. T. Chan, J. Chem. Phys. , 1992, 97: 5007
doi: 10.1063/1.463854
11 B. L. Zhang, C. Z. Wang, K. M. Ho, C. H. Xu, and C. T. Chan, J. Chem. Phys. , 1993, 98: 3095
doi: 10.1063/1.464084
12 L. Senapati, J. Schrier, and K. B. Whaley, Nano Lett. , 2004, 4: 2073
doi: 10.1021/nl049164u
13 J. Lu, R. F. Sabirianov, W. N. Mei, Y. Gao, C. G. Duan, and X. C. Zeng, J. Phys. Chem. B , 2006, 110: 23637
doi: 10.1021/jp0662395
14 K. D. Wang, J. Zhao, S. F. Yang, L. Chen, Q. X. Li, B. Wang, S. H. Yang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. Lett. , 2003, 91: 185504
doi: 10.1103/PhysRevLett.91.185504
15 G. L. Lu, K. M. Deng, H. P. Wu, J. L. Yang, and X. Wang, J. Chem. Phys. , 2006, 124: 054305
doi: 10.1063/1.2162895
16 K. Tan and X. Lu, J. Phys. Chem. A , 2006, 110: 1171
doi: 10.1021/jp056145f
17 C. M. Tang, Y. B. Yuan, K. M. Deng, Y. Z. Liu, X. Y. Li, J. L. Yang, and X. Wang, J. Chem. Phys. , 2006, 125: 104307
doi: 10.1063/1.2339022
18 H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. , 2000, 84: 2917
doi: 10.1103/PhysRevLett.84.2917
19 A. J. Lu and B. C. Pan, Phys. Rev. Lett. , 2004, 92: 105504
doi: 10.1103/PhysRevLett.92.105504
20 F. Ding, Phys. Rev. B , 2005, 72: 245409
doi: 10.1103/PhysRevB.72.245409
21 J. Kotakoski, A. V. Krasheninnikov, and K. Nordlund, Phys. Rev. B , 2006, 74: 245420
doi: 10.1103/PhysRevB.74.245420
22 T. M. Schmidt, R. J. Baierle, P. Piquini, and A. Fazzio, Phys. Rev. B , 2003, 67: 113407
doi: 10.1103/PhysRevB.67.113407
23 N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. , 2007, 98: 166804
doi: 10.1103/PhysRevLett.98.166804
24 G. Gopakumar, M. T. Nguyen, and A. Ceulemans, Chem. Phys. Lett. , 2008, 450: 175
doi: 10.1016/j.cplett.2007.11.030
25 N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. , 2008, 100: 159901
doi: 10.1103/PhysRevLett.100.159901
26 D. Prasad and E. D. Jemmis, Phys. Rev. Lett. , 2008, 100: 165504
doi: 10.1103/PhysRevLett.100.165504
27 H. Tang and S. Ismail-Beigi, Phys. Rev. Lett. , 2007, 99: 115501
doi: 10.1103/PhysRevLett.99.115501
28 A. K. Singh, A. Sadrzadeh, and B. I. Yakobson, Nano Lett. , 2008, 8: 1314
doi: 10.1021/nl073295o
29 J. Zang, M. H. Huang, and F. Liu, Phys. Rev. Lett. , 2007, 98: 146102
doi: 10.1103/PhysRevLett.98.146102
30 Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. , 2006, 97: 216803
doi: 10.1103/PhysRevLett.97.216803
31 L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison, Phys. Rev. B , 2007, 75: 064418
doi: 10.1103/PhysRevB.75.064418
32 Y. W. Son, M. L. Cohen, and S. G. Louie, Nature , 2006, 444: 347
doi: 10.1038/nature05180
33 E. Rudberg, P. Salek, and Y. Luo, Nano Lett. , 2007, 7: 2211
doi: 10.1021/nl070593c
34 E. J. Kan, Z. Y. Li, J. L. Yang, and J. G. Hou, Appl. Phys. Lett. , 2007, 91: 243116
doi: 10.1063/1.2821112
35 Z. H. Zhang and W. L. Guo, Phys. Rev. B , 2008, 77: 075403
doi: 10.1103/PhysRevB.77.075403
36 W. He, Z. Y. Li, J. L. Yang, and J. G. Hou, J. Chem. Phys. , 2008, 129: 024710
doi: 10.1063/1.2946708
37 S. L. Hu, Z. Y. Li, X. C. Zeng, and J. L. Yang, J. Phys. Chem. C , 2008, 112: 8424
doi: 10.1021/jp800096s
38 Y. W. Son, M. L. Cohen, and S. G. Louie, Nano Lett. , 2007, 7: 3518
doi: 10.1021/nl0721822
39 E. J. Kan, Z. Y. Li, J. L. Yang, and J. G. Hou, J. Am. Chem. Soc. , 2008, 130: 4224
doi: 10.1021/ja710407t
40 E. J. Kan, H. J. Xiang, J. L. Yang, and J. G. Hou, J. Chem. Phys. , 2007, 127: 164706
doi: 10.1063/1.2789424
41 E. Durgun, D. Cakir, N. Akman, and S. Ciraci, Phys. Rev. Lett. , 2007, 99: 256806
doi: 10.1103/PhysRevLett.99.256806
42 O. Hod, V. Barone, J. E. Peralta, and G. E. Scuseria, Nano Lett. , 2007, 7: 2295
doi: 10.1021/nl0708922
43 K. Chang, S. Berber, and D. Tomanek, Phys. Rev. Lett. , 2008, 100: 236102
doi: 10.1103/PhysRevLett.100.236102
44 W. He, Z. Y. Li, J. L. Yang, and J. G. Hou, J. Chem. Phys. , 2008, 128: 164701
doi: 10.1063/1.2901026
45 F. Cervantes-Sodi, G. Csanyi, S. Piscanec, and A. C. Ferrari, Phys. Rev. B , 2008, 77: 165427
doi: 10.1103/PhysRevB.77.165427
46 F. W. Zheng, G. Zhou, Z. R. Liu, J. Wu, W. H. Duan, B. L. Gu, and S. B. Zhang, Phys. Rev. B , 2008, 78: 205415
doi: 10.1103/PhysRevB.78.205415
47 N. Gorjizadeh, A. A. Farajian, K. Esfarjani, and Y. Kawazoe, Phys. Rev. B , 2008, 78: 155427
doi: 10.1103/PhysRevB.78.155427
48 V. Barone and J. E. Peralta, Nano Lett. , 2008, 8: 2210
doi: 10.1021/nl080745j
49 H. Sevincli, M. Topsakal, E. Durgun, and S. Ciraci, Phys. Rev. B , 2008, 77: 195434
doi: 10.1103/PhysRevB.77.195434
50 H. J. Xiang, J. L. Yang, J. G. Hou, and Q. S. Zhu, New J. Phys. , 2005, 7: 39
doi: 10.1088/1367-2630/7/1/039
51 Z. Y. Li, H. Y. Qian, J. Wu, B. L. Gu, and W. H. Duan, Phys. Rev. Lett. , 2008, 100: 206802
doi: 10.1103/PhysRevLett.100.206802
52 O. Gulseren, T. Yildirim, S. Ciraci, and C. Kilic, Phys. Rev. B , 2002, 65: 155410
doi: 10.1103/PhysRevB.65.155410
53 Y. He, C. Zhang, C. Cao, and H. P. Cheng, Phys. Rev. B , 2007, 75: 235429
doi: 10.1103/PhysRevB.75.235429
54 L. Sun, Q. X. Li, H. Ren, H. B. Su, Q. W. Shi, and J. L. Yang, J. Chem. Phys. , 2008, 129: 074704
doi: 10.1063/1.2958285
55 E. J. Kan, X. J. Wu, Z. Y. Li, X. C. Zeng, J. L. Yang, and J. G. Hou, J. Chem. Phys. , 2008, 129: 084712
doi: 10.1063/1.2971187
56 L. Sun, Y. F. Li, Z. Y. Li, Q. X. Li, Z. Zhou, Z. F. Chen, J. L. Yang, and J. G. Hou, J. Chem. Phys. , 2008, 129: 174114
doi: 10.1063/1.3006431
57 T. Ono and K. Hirose, Phys. Rev. Lett. , 2007, 98: 026804
doi: 10.1103/PhysRevLett.98.026804
58 J. Zhao, C. G. Zeng, X. Cheng, K. D. Wang, G. W. Wang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. Lett. , 2005, 95: 045502
doi: 10.1103/PhysRevLett.95.045502
59 R. H. Xie, G. W. Bryant, J. J. Zhao, V. H. Smith, A. Di Carlo, and A. Pecchia, Phys. Rev. Lett. , 2003, 90: 206602
doi: 10.1103/PhysRevLett.90.206602
60 A. R. Rocha, V. M. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nature Mater. , 2005, 4: 335
doi: 10.1038/nmat1349
61 V. M. Garcia-Suarez, J. Ferrer, and C. J. Lambert, Phys. Rev. Lett. , 2006, 96: 106804
doi: 10.1103/PhysRevLett.96.106804
62 M. Koleini, M. Paulsson, and M. Brandbyge, Phys. Rev. Lett. , 2007, 98: 197202
doi: 10.1103/PhysRevLett.98.197202
63 H. J. Xiang, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Am. Chem. Soc. , 2006, 128: 2310
doi: 10.1021/ja054751i
64 L. P. Zhou, S. W. Yang, M. F. Ng, M. B. Sullivan, V. B. C. Tan, and L. Shen, J. Am. Chem. Soc. , 2008, 130: 4023
doi: 10.1021/ja7100246
65 V. Meunier, S. V. Kalinin, and B. G. Sumpter, Phys. Rev. Lett. , 2007, 98: 056401
doi: 10.1103/PhysRevLett.98.056401
66 J. Huang, Q. X. Li, H. Ren, H. B. Su, and J. L. Yang, J. Chem. Phys. , 2006, 125: 184713
doi: 10.1063/1.2370906
67 A. R. Rocha, M. Rossi, A. Fazzio, and A. J. R. da Silva, Phys. Rev. Lett. , 2008, 100: 176803
doi: 10.1103/PhysRevLett.100.176803
68 H. Abou-Rachid, A. G. Hu, V. Timoshevskii, Y. F. Song, and L. S. Lussier, Phys. Rev. Lett. , 2008, 100: 196401
doi: 10.1103/PhysRevLett.100.196401
69 M. Khazaei, A. A. Farajian, and Y. Kawazoe, Phys. Rev. Lett ., 2005, 95: 177602
doi: 10.1103/PhysRevLett.95.177602
70 C. C. Kaun and T. Seideman, Phys. Rev. Lett. , 2005, 94: 226801
doi: 10.1103/PhysRevLett.94.226801
71 S. W. D. Bailey, I. Amanatidis, and C. J. Lambert, Phys. Rev. Lett. , 2008, 100: 256802
doi: 10.1103/PhysRevLett.100.256802
72 B. Y. Wang, L. Vukovic, and P. Kral, Phys. Rev. Lett. , 2008, 101: 186808
doi: 10.1103/PhysRevLett.101.186808
73 M. Valden, X. Lai, and D. W. Goodman, Science , 1998, 281: 1647
doi: 10.1126/science.281.5383.1647
74 S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. , 2002, 116: 4094
doi: 10.1063/1.1445121
75 H. Hakkinen, M. Moseler, and U. Landman, Phys. Rev. Lett. , 2002, 89: 033401
doi: 10.1103/PhysRevLett.89.033401
76 H. Hakkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, and L. S. Wang, J. Phys. Chem. A , 2003, 107: 6168
doi: 10.1021/jp035437i
77 S. Bulusu, X. Li, L. S. Wang, and X. C. Zeng, Proc. Natl. Acad. Sci. USA , 2006, 103: 8326
doi: 10.1073/pnas.0600637103
78 J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science , 2003, 299: 864
doi: 10.1126/science.1079879
79 P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke, Science , 2008, 321: 674
doi: 10.1126/science.1161166
80 M. P. Johansson, D. Sundholm, and J. Vaara, Angew. Chem.-Int. Edit. , 2004, 43: 2678
doi: 10.1002/anie.200453986
81 A. Lechtken, D. Schooss, J. R. Stairs, M. N. Blom, F. Furche, N. Morgner, O. Kostko, B. von Issendorff, and M. M. Kappes, Angew. Chem.-Int. Edit. , 2007, 46: 2944
doi: 10.1002/anie.200604760
82 Y. Gao and X. C. Zeng, J. Am. Chem. Soc. , 2005, 127: 3698
doi: 10.1021/ja050435s
83 L. M. Wang, S. Bulusu, H. J. Zhai, X. C. Zeng, and L. S. Wang, Angew. Chem.-Int. Edit. , 2007, 46: 2915
doi: 10.1002/anie.200700060
84 L. M. Wang, S. Bulusu, W. Huang, R. Pal, L. S. Wang, and X. C. Zeng, J. Am. Chem. Soc. , 2007, 129: 15136
doi: 10.1021/ja077465a
85 J. L. Wang, J. L. Bai, J. Jellinek, and X. C. Zeng, J. Am. Chem. Soc. , 2007, 129: 4110
doi: 10.1021/ja0664234
86 S. N. Khanna and P. Jena, Phys. Rev. Lett. , 1992, 69: 1664
doi: 10.1103/PhysRevLett.69.1664
87 P. Pyykk? and N. Runeberg, Angew. Chem.-Int. Edit. , 2002, 41, 2174
doi: 10.1002/1521-3773(20020617)41:12<2174::AID-ANIE2174>3.0.CO;2-8
88 X. Li, B. Kiran, J. Li, H. J. Zhai, and L. S. Wang, Angew. Chem.-Int. Edit. , 2002, 41: 4786
doi: 10.1002/anie.200290048
89 J. P. Dognon, C. Clavaguera, and P. Pyykko, Angew. Chem.-Int. Edit. , 2007, 46: 1427
doi: 10.1002/anie.200604198
90 Z. F. Chen, S. Neukermans, X. Wang, E. Janssens, Z. Zhou, R. E. Silverans, R. B. King, P. V. Schleyer, and P. Lievens, J. Am. Chem. Soc. , 2006, 128: 12829
doi: 10.1021/ja062868g
91 M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. , 1987, 2: 405
doi: 10.1246/cl.1987.405
92 X. L. Ding, Z. Y. Li, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. , 2004, 120: 9594
doi: 10.1063/1.1665323
93 X. L. Ding, Z. Y. Li, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. , 2004, 121: 2558
doi: 10.1063/1.1769359
94 B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Science , 2005, 307: 403
doi: 10.1126/science.1104168
95 L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Woste, U. Heiz, H. Hakkinen, and U. Landman, J. Am. Chem. Soc. , 2003, 125: 10437
doi: 10.1021/ja027926m
96 W. An, Y. Pei, and X. C. Zeng, Nano Lett. , 2008, 8: 195
doi: 10.1021/nl072409t
97 H. Hakkinen, W. Abbet, A. Sanchez, U. Heiz, and U. Landman, Angew. Chem.-Int. Edit. , 2003, 42: 1297
doi: 10.1002/anie.200390334
98 U. Landman, B. Yoon, C. Zhang, U. Heiz, and M. Arenz, Topics in Catal. , 2007, 44: 145
doi: 10.1007/s11244-007-0288-6
99 D. Ricci, A. Bongiorno, G. Pacchioni, and U. Landman, Phys. Rev. Lett. , 2006, 97: 036106
doi: 10.1103/PhysRevLett.97.036106
100 M. Sterrer, T. Risse, M. Heyde, H. P. Rust, and H. J. Freund, Phys. Rev. Lett. , 2007, 98: 206103
doi: 10.1103/PhysRevLett.98.206103
101 B. Yoon and U. Landman, Phys. Rev. Lett. , 2008, 100: 056102
doi: 10.1103/PhysRevLett.100.056102
102 R. L. Whetten and R. C. Price, Science , 2007, 318: 407
doi: 10.1126/science.1150176
103 P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, and R. D. Kornberg, Science , 2007, 318: 430
doi: 10.1126/science.1148624
104 J. Akola, M. Walter, R. L. Whetten, H. Hakkinen, and H. Gronbeck, J. Am. Chem. Soc. , 2008, 130: 3756
doi: 10.1021/ja800594p
105 X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Science , 2001, 294: 571
doi: 10.1126/science.1064354
106 A. Nitzan and M. A. Ratner, Science , 2003, 300: 1384
doi: 10.1126/science.1081572
107 U. Landman, W. D. Luedtke, B. E. Salisbury, and R. L. Whetten, Phys. Rev. Lett. , 1996, 77: 1362
doi: 10.1103/PhysRevLett.77.1362
108 H. Mehrez and S. Ciraci, Phys. Rev. B , 1997, 56: 12632
doi: 10.1103/PhysRevB.56.12632
109 M. R. Sorensen, M. Brandbyge, and K. W. Jacobsen, Phys. Rev. B , 1998, 57: 3283
doi: 10.1103/PhysRevB.57.3283
110 G. Rubio-Bollinger, S. R. Bahn, N. Agrait, K. W. Jacobsen, and S. Vieira, Phys. Rev. Lett. , 2001, 87: 026101
doi: 10.1103/PhysRevLett.87.026101
111 E. Z. da Silva, A. J. R. da Silva, and A. Fazzio, Phys. Rev. Lett. , 2001, 87: 256102
doi: 10.1103/PhysRevLett.87.256102
112 E. Tosatti, S. Prestipino, S. Kostlmeier, A. Dal Corso, and F. D. Di Tolla, Science , 2001, 291: 288
doi: 10.1126/science.291.5502.288
113 P. Z. Coura, S. B. Legoas, A. S. Moreira, F. Sato, V. Rodrigues, S. O. Dantas, D. Ugarte, and D. S. Galvao, Nano Lett. , 2004, 4: 1187
doi: 10.1021/nl049725h
114 P. Jelinek, R. Perez, J. Ortega, and F. Flores, Phys. Rev. B , 2008, 77: 115447
doi: 10.1103/PhysRevB.77.115447
115 Y. Leng, Q. Pu, P. T. Cummings, J. Am. Chem. Soc. , 2008, 130: 17907
doi: 10.1021/ja806319g
116 E. Z. da Silva, A. J. R. da Silva, and A. Fazzio, Phys. Rev. Lett. , 2001, 87: 256102
doi: 10.1103/PhysRevLett.87.256102
117 D. Kruger, H. Fuchs, R. Rousseau, D. Marx, and M. Parrinello, Phys. Rev. Lett. , 2002, 89: 186402
doi: 10.1103/PhysRevLett.89.186402
118 P. Velez, S. A. Dassie, and E. P. M. Leiva, Phys. Rev. Lett. , 2005, 95: 045503
doi: 10.1103/PhysRevLett.95.045503
119 H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature , 1998, 395: 780
doi: 10.1038/27399
120 V. Rodrigues, T. Fuhrer, and D. Ugarte, Phys. Rev. Lett. , 2000, 85: 4124
doi: 10.1103/PhysRevLett.85.4124
121 F. D. Novaes, A. J. R. da Silva, E. Z. da Silva, and A. Fazzio, Phys. Rev. Lett. , 2003, 90: 036101
doi: 10.1103/PhysRevLett.90.036101
122 P. Jelinek, R. Perez, J. Ortega, and F. Flores, Phys. Rev. Lett. , 2006, 96: 046803
doi: 10.1103/PhysRevLett.96.046803
123 F. D. Novaes, A. J. R. da Silva, E. Z. da Silva, and A. Fazzio, Phys. Rev. Lett. , 2006, 96: 016104
doi: 10.1103/PhysRevLett.96.016104
124 C. Zhang, R. N. Barnett, and U. Landman, Phys. Rev. Lett. , 2008, 100: 046801
doi: 10.1103/PhysRevLett.100.046801
125 H. Dodziuk and G. Dolgonos, Chem. Phys. Lett. , 2002, 356: 79
doi: 10.1016/S0009-2614(02)00368-8
126 Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2005, 94: 155504
doi: 10.1103/PhysRevLett.94.155504
127 T. Yildirim and S. Ciraci, Phys. Rev. Lett. , 2005, 94: 175501
doi: 10.1103/PhysRevLett.94.175501
128 H. Lee, W. I. Choi, and J. Ihm, Phys. Rev. Lett. , 2006, 97: 056104
doi: 10.1103/PhysRevLett.97.056104
129 E. Durgun, S. Ciraci, W. Zhou, and T. Yildirim, Phys. Rev. Lett. , 2006, 97: 226102
doi: 10.1103/PhysRevLett.97.226102
130 O. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. , 2005, 127: 14582
doi: 10.1021/ja0550125
131 S. Li and P. Jena, Phys. Rev. Lett. , 2006, 97: 209601
doi: 10.1103/PhysRevLett.97.209601
132 Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc. , 2006, 128: 9741
doi: 10.1021/ja058330c
133 N. Park, S. Hong, G. Kim, and S. H. Jhi, J. Am. Chem. Soc. , 2007, 129: 8999
doi: 10.1021/ja0703527
134 M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Y. Zhang, Phys. Rev. Lett. , 2008, 100: 206806
doi: 10.1103/PhysRevLett.100.206806
135 G. J. Kubas, J. Organomet. Chem. , 2001, 635: 37
doi: 10.1016/S0022-328X(01)01066-X
136 M. Yoon, S. Y. Yang, E. Wang, and Z. Y. Zhang, Nano Lett. , 2007, 7: 2578
doi: 10.1021/nl070809a
137 X. J. Wu, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. B , 2004, 69: 153411
doi: 10.1103/PhysRevB.69.153411
138 X. J. Wu, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. , 2004, 121: 8481
doi: 10.1063/1.1799958
139 S. H. Jhi and Y. K. Kwon, Phys. Rev. B , 2004, 69: 245407
doi: 10.1103/PhysRevB.69.245407
140 X. J. Wu, J. L. Yang, and X. C. Zeng, J. Chem. Phys. , 2006, 125: 044704
doi: 10.1063/1.2210933
141 E. Durgun, Y. R. Jang, and S. Ciraci, Phys. Rev. B , 2007, 76: 073413
doi: 10.1103/PhysRevB.76.073413
[1] Yu Guo, Yang Zhao, Qiao Ling, Si Zhou, Jijun Zhao. Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters[J]. Front. Phys. , 2024, 19(6): 63210-.
[2] Lin Ju, Junxian Liu, Minghui Wang, Shenbo Yang, Shuli Liu. Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy[J]. Front. Phys. , 2024, 19(4): 43208-.
[3] Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction[J]. Front. Phys. , 2024, 19(4): 43204-.
[4] Bocheng Lei, Aolin Li, Wenzhe Zhou, Yunpeng Wang, Wei Xiong, Yu Chen, Fangping Ouyang. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2[J]. Front. Phys. , 2024, 19(4): 43200-.
[5] Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe[J]. Front. Phys. , 2024, 19(3): 33202-.
[6] Yun-Qin Li, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang. Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials[J]. Front. Phys. , 2024, 19(3): 33201-.
[7] Zihan Wang, Yan Yang, Bin Hua, Qingqing Ji. Synthetic two-dimensional electronics for transistor scaling[J]. Front. Phys. , 2023, 18(6): 63601-.
[8] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[9] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[10] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[11] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[12] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[13] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[14] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[15] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed