Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2010, Vol. 5 Issue (1) : 1-25    https://doi.org/10.1007/s11467-009-0067-x
Research articles
Spin qubits for quantum simulations
Xin-hua PENG (彭新华)1,Dieter SUTER2,
1.Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; 2.Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany;
 Download: PDF(1480 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The investigation of quantum mechanical systems mostly concentrates on single elementary particles. If we combine such particles into a composite quantum system, the number of degrees of freedom of the combined system grows exponentially with the number of particles. This is a major difficulty when we try to describe the dynamics of such a system, since the computational resources required for this task also grow exponentially. In the context of quantum information processing, this difficulty becomes the main source of power: in some situations, information processors based in quantum mechanics can process information exponentially faster than classical systems. From the perspective of a physicist, one of the most interesting applications of this type of information processing is the simulation of quantum systems. We call a quantum information processor that simulates other quantum systems a quantum simulator.
This review discusses a specific type of quantum simulator, based on nuclear spin qubits, and using nuclear magnetic resonance for processing. We review the basics of quantum information processing by nuclear magnetic resonance (NMR) as well as the fundamentals of quantum simulation and describe some simple applications that can readily be realized by today’s quantum computers. In particular, we discuss the simulation of quantum phase transitions: the qualitative changes that the ground states of some quantum mechanical systems exhibit when some parameters in their Hamiltonians change through some critical points. As specific examples, we consider quantum phase transitions where the relevant ground states are entangled. Chains of spins coupled by Heisenberg interactions represent an ideal system for studying these effects: depending on the type and strength of interactions, the ground states can be product states or they can be maximally entangled states representing different types of entanglement.
Keywords quantum simulation      quantum computation      quantum information      quantum phase transition      nuclear magnetic resonance (NMR)      
Issue Date: 05 March 2010
 Cite this article:   
Xin-hua PENG (彭新华),Dieter SUTER. Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0067-x
https://academic.hep.com.cn/fop/EN/Y2010/V5/I1/1
G. E. Moore, Electronics, 1965, 38: 114
P. S. Peercy, Nature, 2000: 406: 1023

doi: 10.1038/35023223
L. B. Kish, Phys. Lett. A, 2002, 305: 144

doi: 10.1016/S0375-9601(02)01365-8
R. Landauer, Phys. Today, 1991, May: 23

doi: 10.1063/1.881299
R. P. Feynman, International Journal of Theoretical Physics, 1982, 21: 467

doi: 10.1007/BF02650179
P. Benioff, J. Stat. Phys., 1982, 29: 515

doi: 10.1007/BF01342185
E. Bernstein and U. Vazirani, Quantum complexity theory,in: Proc. 25th ACM Symp. Theory Comp., 1993: 11
D. Coppersmith, arXiv: quant-ph/0201067, 1994
Polynomial-Time Algorithms for Prime Factorizationand Discrete Logarithms on a Quantum Computer, Piscataway, NJ: IEEE Press, 1994
S. Lloyd, Science, 1996, 273: 1073

doi: 10.1126/science.273.5278.1073
R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys. Rev. A, 2002, 65: 042323

doi: 10.1103/PhysRevA.65.042323
D. S. Abrams and S. Lloyd, Phys. Rev. Lett., 1997, 79: 2586

doi: 10.1103/PhysRevLett.79.2586
D. S. Abrams and S. Lloyd, Phys. Rev. Lett., 1999, 83: 5162

doi: 10.1103/PhysRevLett.83.5162
C. Zalka, Proc. R. Soc. Lond. A, 1998, 454: 313

doi: 10.1098/rspa.1998.0162
S. Wiesner, arXiv: quant-ph/9603028, 1996
B. M. Boghosian and W. Taylor, arXiv: quantph/9701016v2, 1997
L. A.Wu, M. S. Byrd, and D. A. Lidar, Phys. Rev. Lett., 2002, 89: 057904

doi: 10.1103/PhysRevLett.89.057904
G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys. Rev. A, 2001, 64: 022319

doi: 10.1103/PhysRevA.64.022319
H. Wang, S. Kais, A. Aspuru-Guzik, and M. R. Hoff- mann, Phys. Chem. Chem. Phys., 2008, 10: 5388

doi: 10.1039/b804804e
A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, Science, 2005, 309: 1704

doi: 10.1126/science.1113479
D. A. Lidar and H.Wang, Phys. Rev. E, 1999, 59: 2429

doi: 10.1103/PhysRevE.59.2429
A. Y. Smirnov, S. Savel'ev, L. G. Mourokh, and F. Nori, Europhys.Lett., 2007, 80: 67008

doi: 10.1209/0295-5075/80/67008
I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-Guzik, Proc. Nat. Acad. Sci.USA, 2008, 105: 18681

doi: 10.1073/pnas.0808245105
M. Greiner, O. Mandel, T. Esslinger, T. W. H?nsch, and I. Bloch, Nature, 2002, 415: 39

doi: 10.1038/415039a
D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett., 1998, 81: 3108

doi: 10.1103/PhysRevLett.81.3108
J. J. García-Ripoll, E. Solano, and M. A. Martin-Delgado, Phys. Rev. B, 2008, 77: 024522
C. H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T. F. Havel, and D. G. Cory, Phys. Rev. A, 1999, 61: 012302

doi: 10.1103/PhysRevA.61.012302
S. Somaroo, C. H. Tseng, T. F. Havel, R. Laflamme, and D. G. Cory, Phys. Rev. Lett., 1999, 82: 5381

doi: 10.1103/PhysRevLett.82.5381
C. H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T. F. Havel, and D. G. Cory, Phys. Rev. A, 2000, 62: 032309

doi: 10.1103/PhysRevA.62.032309
A. K. Khitrin and B. M. Fung, Phys. Rev. A, 2001, 64: 032306

doi: 10.1103/PhysRevA.64.032306
C. Negrevergne, R. Somma, G. Ortiz, E. Knill, and R. Laflamme, Phys. Rev. A, 2005, 71: 032344

doi: 10.1103/PhysRevA.71.032344
U. Haeberlen and J. S. Waugh, Phys. Rev., 1968, 175: 453

doi: 10.1103/PhysRev.175.453
M. A. Nielsen and I. L. Chuang, Quantum Computation and QuantumInformation, Cambridge: Cambridge University Press, 2001
J. Stolze and D. Suter, Quantum Computing: A ShortCourse from Theory to Experiment, 2nd Ed., Berlin: Wiley-VCH, 2008
D. Deutsch, Proc. R. Soc. Lond. A, 1989, 425: 1934

doi: 10.1098/rspa.1989.0099
D. Deutsch, Proc. R. Soc. Lond. A, 1985, 400: 1934

doi: 10.1098/rspa.1985.0070
L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys., 2004, 76: 1037

doi: 10.1103/RevModPhys.76.1037
R. Laflamme, E. Knill, D. Cory, E. Fortunato, T. Havel, C. Miquel, R. Martinez, C. Negrevergne, G. Ortiz, M. Pravia, et al., arXiv: quant-ph/0207172v1, 2002
J. A. Jones and E. Knill, J. Magn. Res., 1999, 141: 322

doi: 10.1006/jmre.1999.1890
N. Linden, B. Herve, R. J. Carbajo, and R. Freeman, Chem. Phys. Lett., 1999, 305: 28

doi: 10.1016/S0009-2614(99)00339-5
N. Sinha, T. S. Mahesh, K. V. Ramanathan, and A. Kumar, J. Chem. Phys., 2001, 114: 4415

doi: 10.1063/1.1346645
A. K. Khitrin and B. M. Fung, J. Chem. Phys., 2000, 112: 6963

doi: 10.1063/1.481293
J. Du, M. Shi, J. Wu, X. Zhou, and R. Han, Phys. Rev. A, 2001, 63: 042302

doi: 10.1103/PhysRevA.63.042302
K. Dorai, Arvind, and A. Kumar, Phys. Rev. A, 2000, 61: 042306
T. S. Mahesh, N. Sinha, K. V. Ramanathan, and A. Kumar, Phys. Rev. A, 2002, 65: 022312

doi: 10.1103/PhysRevA.65.022312
J. Du, J. Wu, M. Shi, L. Han, X. Zhou, B. Ye, H. Weng, and R. Han, Chin. Phys. Lett., 2000, 17: 64

doi: 10.1088/0256-307X/17/1/022
K. V. R. M. Murali, N. Sinha, T. S. Mahesh, M. H. Levitt, K. V. Ramanathan, and A. Kumar, Phys. Rev. A, 2002, 66: 022313

doi: 10.1103/PhysRevA.66.022313
T. S. Mahesh, K. Dorai, Arvind, and A. Kumar, J. Magn. Res., 2001, 148: 95

doi: 10.1006/jmre.2000.2225
N. Linden, H. Barjat, and R. Freeman, Chem. Phys. Lett., 1998, 296: 61

doi: 10.1016/S0009-2614(98)01015-X
D. G. Cory, M. D. Price, and T. F. Havel, Physica D, 1998, 120: 82. In: Proceedings of the Fourth Workshop on Physicsand Consumption
K. Dorai, Arvind, and A. Kumar, Phys. Rev. A, 2001, 63: 034101
R. Das, T. S. Mahesh, and A. Kumar, J. Magn. Res., 2002, 159: 46, ISSN 1090-7807
R. Das, T. S. Mahesh, and A. Kumar, Chem. Phys. Lett., 2003, 369: 8, ISSN 0009-2614
D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Nat. Acad. Sci. USA, 1997, 94: 1634

doi: 10.1073/pnas.94.5.1634
N. A. Gershenfeld and I. L. Chuang, Science, 1997, 275: 350

doi: 10.1126/science.275.5298.350
E. Knill, I. Chuang, and R. Laflamme, Phys. Rev. A, 1998, 57: 3348
L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve, and I. L. Chuang, Phys. Rev. Lett., 2000, 85: 5452

doi: 10.1103/PhysRevLett.85.5452
X. Peng, X. Zhu, X. Fang, M. Feng, M. Liu, and K. Gao, Phys. Rev. A, 2002, 65: 042315

doi: 10.1103/PhysRevA.65.042315
X. Peng, X. Zhu, X. Fang, M. Feng, K. Gao, X. Yang, and M. Liu, Chem. Phys. Lett., 2001, 340: 509

doi: 10.1016/S0009-2614(01)00421-3
Y. Sharf, T. F. Havel, and D. G. Cory, Phys. Rev. A, 2000, 62: 052314
U. Sakaguchi, H. Ozawa, and T. Fukumi, Phys. Rev. A, 2000, 61: 042313
Z. L. Mádi, R. Brüschweiler, and R. R. Ernst, J. Chem. Phys., 1998, 109: 10603
X. Peng, X. Zhu, X. Fang, M. Feng, M. Liu, and K. Gao, J. Chem. Phys., 2004, 120: 3579

doi: 10.1063/1.1642579
E. Knill, R. Laflamme, R. Martinez, and C.-H. Tseng, Nature, 2000, 404: 368

doi: 10.1038/35006012
B. M. Fung, Phys. Rev. A, 2001, 63: 022304

doi: 10.1103/PhysRevA.63.022304
X. Peng, X. Zhu, X. Fang, M. Feng, X. Yang, M. Liu, and K. Gao, arXiv: quant-ph/0202010, 2002
W. S. Warren, Science, 1997, 277: 1688

doi: 10.1126/science.277.5332.1688
D. Suter and T. S. Mahesh, J. Chem. Phys. 2008, 128: 052206

doi: 10.1063/1.2838166
G. L. Long, H. Y. Yan, and Y. Sun, J. Opt. B, 2001, 3: 376
E. M. Fortunato, M. A. Pravia, N. Boulant, G. Teklemariam, T. F. Havel, and D. G. Cory, J. Chem. Phys., 2002, 116: 7599

doi: 10.1063/1.1465412
R. Das, T. S. Mahesh, and A. Kumar, Phys. Rev. A, 2003, 67: 062304

doi: 10.1103/PhysRevA.67.062304
E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science, 2001, 292: 472

doi: 10.1126/science.1057726
A. Mizel, D. A. Lidar, and M. Mitchell, Phys. Rev. Lett., 2007, 99: 070502

doi: 10.1103/PhysRevLett.99.070502
M. H. S. Amin, Phys. Rev. Lett., 2008, 100: 130503

doi: 10.1103/PhysRevLett.100.130503
J. Roland and N. J. Cerf, Phys. Rev. A, 2002, 65: 042308

doi: 10.1103/PhysRevA.65.042308
M. Steffen, W. van Dam, T. Hogg, G. Breyta, and I. Chuang, Phys. Rev. Lett., 2003, 90: 067903

doi: 10.1103/PhysRevLett.90.067903
X. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, and J. Du, Phys. Rev. Lett., 2008, 101: 145501

doi: 10.1103/PhysRevLett.101.145501
A. Mitra, A. Ghosh, R. Das, A. Patel, and A. Kumar, J. Magn. Res., 2005, 177: 285

doi: 10.1016/j.jmr.2005.08.004
J. Roland and N. J. Cerf, Phys. Rev. A, 2005, 71: 032330

doi: 10.1103/PhysRevA.71.032330
A. M. Childs, E. Farhi, and J. Preskill, Phys. Rev. A, 2001, 65: 012322

doi: 10.1103/PhysRevA.65.012322
M. R. Garey and D. S. Johnson, Computers and Intractability:A Guide to the Theory of NP-Completeness, San Francisco: Freeman, 1979
M. ?nidari? and M. Horvat, Phys. Rev. A, 2006, 73: 022329
T. Hogg, Phys. Rev. A, 2003, 67: 022314

doi: 10.1103/PhysRevA.67.022314
M. ?nidari?, Phys. Rev. A, 2005, 71: 062305
S. Blanes, F. Casas, J. Oteo, and J. Ros, Physics Reports, 2009, 470: 151

doi: 10.1016/j.physrep.2008.11.001
M. Suzuki, Quantum Monte Carlo Methods in Condensed-Matter Physics, Singapore: World Scientific, 1993
W. K. Wootters, Phys. Rev. Lett., 1998, 80: 2245

doi: 10.1103/PhysRevLett.80.2245
V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A, 2000, 61: 052306

doi: 10.1103/PhysRevA.61.052306
P. Rungta and C. M. Caves, Phys. Rev. A, 2003, 67: 012307

doi: 10.1103/PhysRevA.67.012307
P. Rungta, V. Bu?ek, C. M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A, 2001, 64: 042315
W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A, 2000, 62: 062314
B. M. Terhal, Phys. Lett. A, 2000, 271: 319

doi: 10.1016/S0375-9601(00)00401-1
M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A, 1996, 223: 1

doi: 10.1016/S0375-9601(96)00706-2
M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Phys. Rev. A, 2000, 62: 052310

doi: 10.1103/PhysRevA.62.052310
A. Sanpera, D. Bru?, and M. Lewenstein, Phys. Rev. A, 2001, 63: 050301

doi: 10.1103/PhysRevA.63.050301
S. Sachdev, Quantum Phase Transition, Cambridge: Cambrige: University Press, 1999
P. C. Canfield, Nature Phys., 2008, 4: 167

doi: 10.1038/nphys908
H. M. R?nnow, R. Parthasarathy, J. Jensen, G. Aeppli, T. F. Rosenbaum, and D. F. McMorrow, Science, 2005, 308: 389

doi: 10.1126/science.1108317
J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, and P. Coleman, Nature, 2003, 424: 524

doi: 10.1038/nature01774
A. Yeh, Y. A. Soh, J. Brooke, G. Aeppli, T. F. Rosenbaum, and S. M. Hayden, Nature, 2002, 419: 459

doi: 10.1038/nature01044
T. Giamarchi, C. Ruegg, and O. Tchernyshyov, Nature Phys., 2008, 4: 198

doi: 10.1038/nphys893
P. Gegenwart, Q. Si, and F. Steglich, Nature Phys., 2008, 4: 186

doi: 10.1038/nphys892
S. Sachdev, Nature Phys., 2008, 4: 173

doi: 10.1038/nphys894
D. M. Broun, Nature Phys., 2008, 4: 170

doi: 10.1038/nphys909
Editorial, Nature Phys., 2008, 4: 157
A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature, 2002, 416: 608

doi: 10.1038/416608a
T. J. Osborne and M. A. Nielsen, Phys. Rev. A, 2002, 66: 032110

doi: 10.1103/PhysRevA.66.032110
M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett., 2001, 87: 017901

doi: 10.1103/PhysRevLett.87.017901
R. Somma, G. Ortiz, H. Barnum, E. Knill, and L. Viola, Phys. Rev. A, 2004, 70: 042311

doi: 10.1103/PhysRevA.70.042311
S. J. Gu, S. S. Deng, Y. Q. Li, and H. Q. Lin, Phys. Rev. Lett., 2004, 93: 086402

doi: 10.1103/PhysRevLett.93.086402
F. Gebbhard, The Mott Metal-Insulator Transition: Models and Methods, New York: Springer-Verlag, 1997
R. B. Laughlin, Phys. Rev. Lett., 1983, 50: 1395

doi: 10.1103/PhysRevLett.50.1395
L. Zhou, H. S. Song, Y. Q. Guo, and C. Li, Phys.Rev. A, 2003, 68: 024301

doi: 10.1103/PhysRevA.68.024301
X. Wang, Phys. Rev. A, 2002, 66: 034302

doi: 10.1103/PhysRevA.66.034302
G. Lagmago Kamta and A. F. Starace, Phys. Rev. Lett., 2002, 88: 107901

doi: 10.1103/PhysRevLett.88.107901
R. J. Baxter and F. Y. Wu, Phys. Rev. Lett., 1973, 31: 1294

doi: 10.1103/PhysRevLett.31.1294
F. Igloi, J. Phys. A: Math. Gen., 1987, 20: 5319

doi: 10.1088/0305-4470/20/15/043
P. Lou, W. C. Wu, and M. C. Chang, Phys. Rev. B, 2004, 70: 064405

doi: 10.1103/PhysRevB.70.064405
P. Suranyi, Phys. Rev. Lett., 1976, 37: 725

doi: 10.1103/PhysRevLett.37.725
C. D'Cruz and J. K. Pachos, Phys. Rev. A, 2005, 72: 043608

doi: 10.1103/PhysRevA.72.043608
D. I. Tsomokos, J. J. García-Ripoll, N. R. Cooper, and J. K. Pachos, Phys. Rev. A, 2008, 77: 012106
J. K. Pachos and E. Rico, Phys. Rev. A, 2004, 70: 053620

doi: 10.1103/PhysRevA.70.053620
J. K. Pachos and M. B. Plenio, Phys. Rev. Lett., 2004, 93: 056402

doi: 10.1103/PhysRevLett.93.056402
H. P. Buchler, A. Micheli, and P. Zoller, Nature Phys., 2007, 3: 726

doi: 10.1038/nphys678
J. C. Anglès d'Auriac and F. Iglói, Phys. Rev. E, 1998, 58: 241
K. A. Penson, R. Jullien, and P. Pfeuty, Phys. Rev. B, 1982, 26: 6334

doi: 10.1103/PhysRevB.26.6334
K. A. Penson, J. M. Debierre, and L. Turban, Phys. Rev. B, 1988, 37: 7884

doi: 10.1103/PhysRevB.37.7884
L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Nature, 2001, 414: 883

doi: 10.1038/414883a
J. Zhang, et al., Phys. Rev. Lett., 2008, 100
N. Linden, E. Kupce, and R. Freeman, Chem. Phys. Lett., 1999, 311: 321

doi: 10.1016/S0009-2614(99)00829-5
I. L. Chuang, N. Gershenfeld., M. G. Kubinec, and D. W. Leung, Proc. R. Soc. Lond. A, 1998, 454: 447
G. Teklemariam, E. M. Fortunato, M. A. Pravia, T. F. Havel, and D. G. Cory, Phys. Rev. Lett., 2001, 86: 5845

doi: 10.1103/PhysRevLett.86.5845
A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, Nature Phys., 2008, 4: 757

doi: 10.1038/nphys1032
F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys. Rev. A, 2002, 65: 052112

doi: 10.1103/PhysRevA.65.052112
O. Osenda, Z. Huang, and S. Kais, Phys. Rev. A, 2003, 67: 062321

doi: 10.1103/PhysRevA.67.062321
Z. Y. Sun, K. L. Yao, W. Yao, D. H. Zhang, and Z. L. Liu, Phys. Rev. B, 2008, 77: 014416

doi: 10.1103/PhysRevB.77.014416
V. Subrahmanyam, Phys. Rev. A, 2004, 69: 022311

doi: 10.1103/PhysRevA.69.022311
F. C. Alcaraz, A. Saguia, and M. S. Sarandy, Phys. Rev. A, 2004, 70: 032333

doi: 10.1103/PhysRevA.70.032333
X. Wang, Phys. Rev. A, 2001, 64: 012313

doi: 10.1103/PhysRevA.64.012313
J. Zhao, I. Peschel, and X. Wang, Phys. Rev. B, 2006, 73: 024405

doi: 10.1103/PhysRevB.73.024405
A. Kopp and K. L. Hur, Phys. Rev. Lett., 2007, 98: 220401

doi: 10.1103/PhysRevLett.98.220401
X. Jia, A. R. Subramaniam, I. A. Gruzberg, and S. Chakravarty, Phys. Rev. B, 2008, 77: 014208

doi: 10.1103/PhysRevB.77.014208
L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek, Phys. Rev. A, 2007, 75: 052321

doi: 10.1103/PhysRevA.75.052321
C. Wellard and R. Orùs, Phys. Rev. A, 2004, 70: 062318

doi: 10.1103/PhysRevA.70.062318
J. I. Latorre, E. Rico, and G. Vidal, Quant. Inf. Comput., 2004, 4: 48
G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett., 2003,90: 227902

doi: 10.1103/PhysRevLett.90.227902
M. F. Yang, Phys. Rev. A, 2005, 71: 030302

doi: 10.1103/PhysRevA.71.030302
T. R. de Oliveira, G. Rigolin, and M. C. de Oliveira, Phys. Rev. A, 2006, 73: 010305(R)

doi: 10.1103/PhysRevA.73.010305
D. A. Meyer and N. R. Wallach, Journal of MathematicalPhysics, 2002, 43: 4273

doi: 10.1063/1.1497700
X. Peng, X. Zhu, D. Suter, J. Du, M. Liu, and K. Gao, Phys. Rev. A, 2005, 72: 052109

doi: 10.1103/PhysRevA.72.052109
G. Schaller, Phys. Rev. A, 2008, 78: 032328

doi: 10.1103/PhysRevA.78.032328
R. Schützhold and G. Schaller, Phys. Rev. A, 2006, 74: 060304

doi: 10.1103/PhysRevA.74.060304
J. I. Latorre and R. Orùs, Phys. Rev. A, 2004, 69: 062302

doi: 10.1103/PhysRevA.69.062302
T. Caneva, R. Fazio, and G. E. Santoro, arXiv: 0706. 1832v1, 2007
Quantum information processing and communication: strategicreport on current status, visions and goals for research in Europe
H. G. Krojanski and D. Suter, Phys. Rev. Lett., 2004, 93: 090501

doi: 10.1103/PhysRevLett.93.090501
H. G. Krojanski and D. Suter, Phys. Rev. Lett., 2006, 97: 150503

doi: 10.1103/PhysRevLett.97.150503
H. G. Krojanski and D. Suter, Phys. Rev. A, 2006, 74: 062319

doi: 10.1103/PhysRevA.74.062319
M. Lovric, H. G. Krojanski, and D. Suter, Phys. Rev. A, 2007, 75: 042305

doi: 10.1103/PhysRevA.75.042305
R. Gulde, M. Riebe, G. Lancaster, C. Becher, J. Eschner, , H. H. F. Schmidt-Kaler, I. Chuang, and R. Blatt, Nature (London), 2003, 421: 48

doi: 10.1038/nature01336
P. Chen, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett., 2001, 87: 067401

doi: 10.1103/PhysRevLett.87.067401
E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion, and D. Esteve, Phys. Rev. Lett., 2004, 93: 157005

doi: 10.1103/PhysRevLett.93.157005
Obviously, the populations are not really negative;since we omitted terms proportional to the unity operator, the populationsquoted here are just the difference from the mean populations pav = n?n.
[1] Pingyu Zhu, Qilin Zheng, Shichuan Xue, Chao Wu, Xinyao Yu, Yang Wang, Yingwen Liu, Xiaogang Qiang, Junjie Wu, Ping Xu. On-chip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs[J]. Front. Phys. , 2020, 15(6): 61501-.
[2] Jing Xu, Sai Li, Tao Chen, Zheng-Yuan Xue. Nonadiabatic geometric quantum computation with optimal control on superconducting circuits[J]. Front. Phys. , 2020, 15(4): 41503-.
[3] Luis Roa, Andrea Espinoza, Ariana Muñoz, María L. Ladrón de Guevara. Recovering information in probabilistic quantum teleportation[J]. Front. Phys. , 2019, 14(6): 61602-.
[4] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[5] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[6] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[7] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[8] Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder[J]. Front. Phys. , 2018, 13(4): 137306-.
[9] Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method[J]. Front. Phys. , 2018, 13(4): 136401-.
[10] Gaurav Bhole, Jonathan A. Jones. Practical pulse engineering: Gradient ascent without matrix exponentiation[J]. Front. Phys. , 2018, 13(3): 130312-.
[11] M. AbuGhanem, A. H. Homid, M. Abdel-Aty. Cavity control as a new quantum algorithms implementation treatment[J]. Front. Phys. , 2018, 13(1): 130303-.
[12] Hai-Tao Cui (崔海涛),Xue-Xi Yi (衣学喜). Detecting ground-state degeneracy in many-body systems through qubit decoherence[J]. Front. Phys. , 2017, 12(1): 120304-.
[13] V. R. Shaginyan,A. Z. Msezane,G. S. Japaridze,K. G. Popov,V. A. Khodel. Strongly correlated Fermi systems as a new state of matter[J]. Front. Phys. , 2016, 11(5): 117103-.
[14] V. R. Shaginyan,A. Z. Msezane,G. S. Japaridze,K. G. Popov,J. W. Clark,V. A. Khodel. Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2[J]. Front. Phys. , 2016, 11(2): 117102-.
[15] Bao An(保安),Chen Yao-Hua(陈耀华),Lin Heng-Fu(林恒福),Liu Hai-Di(刘海迪),Zhang Xiao-Zhong(章晓中). Quantum phase transitions in two-dimensional strongly correlated fermion systems[J]. Front. Phys. , 2015, 10(5): 106401-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed