Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2010, Vol. 5 Issue (2) : 150-160    https://doi.org/10.1007/s11467-009-0076-9
Electronic structures of ternary iron arsenides A Fe 2 As 2 ( A = Ba, Ca, or Sr)
Feng-jie MA(马锋杰)1,2,Zhong-yi LU(卢仲毅)1,Tao XIANG(向涛)3,2
1. Department of Physics, Renmin University of China, Beijing 100872, China; 2. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China; 3. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(586 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We have studied the electronic and magnetic structures of the ternary iron arsenides AFe2As2 (A = Ba, Ca, or Sr) using the first-principles density functional theory. The ground states of these compounds are in a collinear antiferromagnetic order, resulting from the interplay between the nearest and the next-nearest neighbor superexchange antiferromagnetic interactions bridged by As 4p orbitals. The correction from the spin–orbit interaction to the electronic band structure is given. The pressure can reduce dramatically the magnetic moment and diminish the collinear antiferromagnetic order. Based on the calculations, we propose that the low energy dynamics of these materials can be described effectively by a t−JH−J1−J2-type model [arXiv: 0806.3526v2, 2008].
Keywords iron arsenides superconductor      first-principles density functional theory      electronic structure      magnetic structure      superexchange antiferromagnetic interaction     
Fund: 
Issue Date: 05 June 2010
 Cite this article:   
Feng-jie MA(马锋杰),Zhong-yi LU(卢仲毅),Tao XIANG(向涛). Electronic structures of ternary iron arsenides A Fe 2 As 2 ( A = Ba, Ca, or Sr)[J]. Front. Phys. , 2010, 5(2): 150-160.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0076-9
https://academic.hep.com.cn/fop/EN/Y2010/V5/I2/150
Part of the calculations presented in this paperhad been first reported in our paper, arXiv:0806.3526v2, 2008
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc., 2008, 130: 3296

doi: 10.1021/ja800073m
M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett., 2008, 101: 107006

doi: 10.1103/PhysRevLett.101.107006
K. Sasmal, B. Lv, B. Lorenz, A. Guloy, F. Chen, Y. Xue, and C. W. Chu, Phys. Rev. Lett., 2008, 101: 107007

doi: 10.1103/PhysRevLett.101.107007
G. Wu, H. Chen, T.Wu, Y. L. Xie, Y. J. Yan, R. H. Liu, X. F. Wang, J. J. Ying, and X. H. Chen, J. Phys.: Condens. Matter, 2008, 20: 422201

doi: 10.1088/0953-8984/20/42/422201
M. C. Boyer, K. Chatterjee, W. D. Wise, G. F. Chen, J. L. Luo, N. L. Wang, and E. W. Hudson, arXiv: 0806.4400, 2008
C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature, 2008, 453: 899

doi: 10.1038/nature07057
M. A. McGuire, A. D. Christianson, A. S. Sefat, R. Jin, E. A. Payzant, B. C. Sales, M. D. Lumsden, and D. Mandrus, Phys. Rev. B, 2008, 78: 094517

doi: 10.1103/PhysRevB.78.094517
M. Rotter, M. Tegel, I. Schellenberg, W. Hermes, R. Pöttgen, and D. Johrendt, Phys. Rev. B, 2008, 78: 020503(R)

doi: 10.1103/PhysRevB.78.020503
Q. Huang, Y. Qiu, W. Bao, J. W. Lynn, M. A. Green, Y. C. Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett., 2008, 101: 257003

doi: 10.1103/PhysRevLett.101.257003
M. S. Torikachvili, S. L. Bud’ko, N. Ni, and P. C. Canfield, Phys. Rev. Lett., 2008, 101: 057006

doi: 10.1103/PhysRevLett.101.057006
T. Park, E. Park, H. Lee, T. Klimczuk, E. D. Bauer, F. Ronning, and J. D. Thompson, J. Phys.: Condens. Matter, 2008, 20: 322204

doi: 10.1088/0953-8984/20/32/322204
P. L. Alireza, J. Gillett, Y. T. C. Ko, S. E. Sebastian, and G. G. Lonzarich, J. Phys.: Condens.Matter, 2009, 21: 012208

doi: 10.1088/0953-8984/21/1/012208
I. A. Nekrasov, Z. V. Pchelkina, and M. V. Sadovskii, JETP Letters, 2008, 88: 144

doi: 10.1134/S0021364008140166
D. J. Singh, Phys. Rev. B, 2008, 78: 094511

doi: 10.1103/PhysRevB.78.094511
P. Giannozzi, et al, www.quantum-espresso.org
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865

doi: 10.1103/PhysRevLett.77.3865
D. Vanderbilt, Phys. Rev. B, 1990, 41: 7892

doi: 10.1103/PhysRevB.41.7892
F. Ma, Z. Y. Lu, and T. Xiang, Phys. Rev. B, 2008, 78: 224517

doi: 10.1103/PhysRevB.78.224517
L. X. Yang, Y. Zhang, H.W. Ou, J. F. Zhao, D.W. Shen, B. Zhou, J. Wei, F. Chen, M. Xu, C. He, Y. Chen, Z. D. Wang, X. F. Wang, T. Wu, G. Wu, X. H. Chen, M. Arita, K. Shimada, M. Taniguchi, Z. Y. Lu, T. Xiang, and D. L. Feng, Phys. Rev. Lett., 2009, 102: 107002

doi: 10.1103/PhysRevLett.102.107002
D. J. Singh and M. H. Du, Phys. Rev. Lett., 2008, 100: 237003

doi: 10.1103/PhysRevLett.100.237003
F. Ma and Z. Y. Lu, Phys. Rev. B, 2008, 78: 033111

doi: 10.1103/PhysRevB.78.033111
J. K. Dong, L. Ding, H. Wang, X. F. Wang, T. Wu, G. Wu, X. H. Chen, and S. Y. Li, New Journal of Physics, 2008, 10: 123031

doi: 10.1088/1367-2630/10/12/123031
F. Ronning, T. Klimczuk, E. D. Bauer, H. Volz, and J. D. Thompson, J. Phys.: Condens.Matter, 2008, 20: 322201

doi: 10.1088/0953-8984/20/32/322201
G. F. Chen, Z. Li, J. Dong, G. Li, W. Z. Hu, X. D. Zhang, X. H. Song, P. Zheng, N. L. Wang, and J. L. Luo, Phys. Rev. B, 2008, 78: 224512

doi: 10.1103/PhysRevB.78.224512
N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B, 2008, 78: 014523

doi: 10.1103/PhysRevB.78.014523
W. Z. Hu, J. Dong, G. Li, Z. Li, P. Zheng, G. F. Chen, J. L. Luo, and N. L. Wang, Phys. Rev. Lett., 2008, 101: 257005

doi: 10.1103/PhysRevLett.101.257005
N. Ni, S. L. Bud’ko, A. Kreyssig, S. Nandi, G. E. Rustan, A. I. Goldman, S. Gupta, J. D. Corbett, A. Kracher, and P. C. Canfield, Phys. Rev. B, 2008, 78: 014507

doi: 10.1103/PhysRevB.78.014507
C. Krellner, N. Caroca-Canales, A. Jesche, H. Rosner, A. Ormeci, and C. Geibel, Phys. Rev. B, 2008, 78: 100504

doi: 10.1103/PhysRevB.78.100504
In Ref. [1], we had reported the electronicband structure and the Fermi surface of AFe2As2 (A=Ba, Sr, Ca) in the collinear antiferromagneticorder with the parallel alignment between interlayer Fe moments alongc-axis.
W. H. Xie, M. L. Bao, Z. J. Zhao, and B. G. Liu, Phys. Rev. B, 2009, 79: 115128

doi: 10.1103/PhysRevB.79.115128
F. Ma,W. Ji, J. P. Hu, Z. Y. Lu, and T. Xiang, Phys. Rev. Lett., 2009, 102: 177003

doi: 10.1103/PhysRevLett.102.177003
C. Cao, P. J. Hirschfeld, and H. P. Cheng, Phys. Rev. B, 2008, 77: 220506(R)

doi: 10.1103/PhysRevB.77.220506
A. Leithe-Jasper, W. Schnelle, C. Geibel, and H. Rosner, 2008, arXiv: 0807.2223
A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett., 2008, 101: 117004

doi: 10.1103/PhysRevLett.101.117004
R. V. Helmolt, J. Wocker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett., 1993, 71: 2331

doi: 10.1103/PhysRevLett.71.2331
C. Zener, Phys. Rev., 1951, 82: 403

doi: 10.1103/PhysRev.82.403
P. Cheng, H. Yang, Y. Jia, L. Fang, X. Zhu, G. Mu, and H. H. Wen, Phys. Rev. B, 2008, 78: 134508

doi: 10.1103/PhysRevB.78.134508
G. F. Chen, Z. Li, J. Dong, G. Li, W. Z. Hu, X. D. Zhang, X. H. Song, P. Zheng, N. L. Wang, and J. L. Luo, Phys. Rev. B, 2008, 78: 224512

doi: 10.1103/PhysRevB.78.224512
T. Wu, J. J. Ying, G. Wu, R. H. Liu, Y. He, H. Chen, X. F. Wang, Y. L. Xie, Y. J. Yan, and X. H. Chen, Phys. Rev. B, 2009, 79: 115121

doi: 10.1103/PhysRevB.79.115121
[1] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[2] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[3] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[4] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[5] Ze-Lian Wang,Wen-Hui Xie,Yong-Hong Zhao. Tunable band structure and effective mass of disordered chalcopyrite[J]. Front. Phys. , 2017, 12(1): 127103-.
[6] Bakhtiar Ul Haq, Rashid Ahmed, Galila Abdellatif, Amiruddin Shaari, Faheem K. Butt, Mohammed Benali Kanoun, Souraya Goumri-Said. Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations[J]. Front. Phys. , 2016, 11(1): 117101-.
[7] Feng-Bin Liu (刘峰斌), Jing-Lin Li (李景林), Wen-Bin Chen (陈文彬), Yan Cui (崔岩), Zhi-Wei Jiao (焦志伟), Hong-Juan Yan (阎红娟), Min Qu (屈敏), Jie-Jian Di (狄杰建). Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study[J]. Front. Phys. , 2016, 11(1): 116804-.
[8] Xu-Guang Xu, Wei Li. Electronic and magnetic structures of ternary iron telluride KFe2Te2[J]. Front. Phys. , 2015, 10(4): 107403-.
[9] Qing-Xiao Zhou, Chao-Yang Wang, Zhi-Bing Fu, Yong-Jian Tang, Hong Zhang. Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study[J]. Front. Phys. , 2014, 9(2): 200-209.
[10] Zhen Chen, Rui-Juan Xiao, Chao Ma, Yuan-Bin Qin, Hong-Long Shi, Zhi-Wei Wang, Yuan-Jun Song, Zhen Wang, Huan-Fang Tian, Huai-Xin Yang, Jian-Qi Li. Electronic structure of YMn2O5 studied by EELS and first-principles calculations[J]. Front. Phys. , 2012, 7(4): 429-434.
[11] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[12] Dai-xiang Mou, Lin Zhao, Xing-jiang Zhou. Structural, magnetic and electronic properties of the iron–chalcogenide AxFe2-ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors[J]. Front. Phys. , 2011, 6(4): 410-428.
[13] Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces[J]. Front. Phys. , 2011, 6(3): 294-308.
[14] Xing-jiang ZHOU (周兴江), Guo-dong LIU (刘国东), Hai-yun LIU (刘海云), Lin ZHAO (赵林), Wen-tao ZHANG (张文涛), Xiao-wen JIA (贾小文), Jian-qiao MENG (孟建桥), . Band structure, Fermi surface, and superconducting gap in FeAs-based superconductors revealed by angle-resolved photoemission spectroscopy[J]. Front. Phys. , 2009, 4(4): 427-432.
[15] Bin GAO (高斌), Jun JIANG (江俊), Yi LUO (罗毅). Simulation of electronic structure of nanomaterials by central insertion scheme[J]. Front Phys Chin, 2009, 4(3): 307-314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed