Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2010, Vol. 5 Issue (3) : 291-307    https://doi.org/10.1007/s11467-010-0005-y
Research articles
Manipulate light polarizations with metamaterials: From microwave to visible
Jia-ming HAO(郝加明)1,Min QIU(仇旻)2,Lei ZHOU(周磊)3,
1.Surface Physics Laboratory (State Key Laboratory) and Physics Department, Fudan University, Shanghai 200433, China;Laboratory of Photonics and Microwave Engineering, School of Information and Communication Technology, Royal Institute of Technology (KTH), Electrum 229, 164 40, Kista, Sweden; 2.Laboratory of Photonics and Microwave Engineering, School of Information and Communication Technology, Royal Institute of Technology (KTH), Electrum 229, 164 40, Kista, Sweden; 3.Surface Physics Laboratory (State Key Laboratory) and Physics Department, Fudan University, Shanghai 200433, China;
 Download: PDF(783 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Polarization is an important characteristic of electromagnetic (EM) waves, and efficient manipulations over EM wave polarizations are always desirable in practical applications. Here, we review the recent efforts in controlling light polarizations with metamaterials, at frequencies ranged from microwave to visible. We first presented a 4 × 4 version transfer matrix method (TMM) to study the scatterings by an anisotropic metamaterial of EM waves with arbitrary propagating directions and polarizations. With the 4 × 4 TMM, we discovered several amazing polarization manipulation phenomena based on the reflection geometry and proposed corresponding model metamaterial systems to realize such effects. Metamaterial samples were fabricated with the help of finite-difference-time-domain (FDTD) simulations, and experiments were performed to successfully realize these ideas at both microwave and visible frequencies. Efforts in employing metamaterials to manipulate light polarizations based on the transmission geometry are also reviewed.
Keywords polarization      metamaterials      
Issue Date: 05 September 2010
 Cite this article:   
Jia-ming HAO(郝加明),Lei ZHOU(周磊),Min QIU(仇旻). Manipulate light polarizations with metamaterials: From microwave to visible[J]. Front. Phys. , 2010, 5(3): 291-307.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-010-0005-y
https://academic.hep.com.cn/fop/EN/Y2010/V5/I3/291
M. Born and E. Wolf, Principles of Optics,Cambridge: Cambridge UniversityPress, 1999
E. Hecht, Optics, New York: Addison Wesley, 2002
J. A. Kong, Electromagnetic Wave Theory, Cambridge: EMW Publishing, 2005
J. M. Bennett and H. E. Bennet, in: Handbook of Optics,Sec. 10, edited by W. G. Driscoll and W. Vaughan, New York: McGraw-Hill, 1978
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett., 1996, 76: 4773

doi: 10.1103/PhysRevLett.76.4773
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech., 1999, 47: 2075

doi: 10.1109/22.798002
D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett., 2000, 84: 4184

doi: 10.1103/PhysRevLett.84.4184
H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, Phys. Rev. Lett., 2005, 94: 063901

doi: 10.1103/PhysRevLett.94.063901
S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett., 2005, 95: 137404

doi: 10.1103/PhysRevLett.95.137404
V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Opt. Lett., 2005, 30: 3356

doi: 10.1364/OL.30.003356
G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett., 2006, 31: 1800

doi: 10.1364/OL.31.001800
G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett., 2007, 32: 53

doi: 10.1364/OL.32.000053
V. G. Veselago, Sov. Phys. Usp., 1968, 10: 509

doi: 10.1070/PU1968v010n04ABEH003699
R. A. Shelby, D. R. Smith, and S. Schultz, Science, 2001, 292: 77

doi: 10.1126/science.1058847
D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science, 2004, 305: 788

doi: 10.1126/science.1096796
J. B. Pendry, Phys. Rev. Lett., 2000, 85: 3966

doi: 10.1103/PhysRevLett.85.3966
N. Fang, H. Lee, C. Sun, and X. Zhang, Science, 2005, 308: 534

doi: 10.1126/science.1108759
A. Ono, J. Kato, and S. Kawata, Phys. Rev. Lett., 2005, 95: 267407

doi: 10.1103/PhysRevLett.95.267407
P. A. Belov, Y. Hao, and S. Sudhakaran, Phys. Rev. B, 2006, 73: 033108

doi: 10.1103/PhysRevB.73.033108
X. H. Hu, Z. H. Hang, J. Li, J. Zi, and C. T. Chan, Phys. Rev. E, 2006, 73: 015602

doi: 10.1103/PhysRevE.73.015602
C. Y. Luo, M. Ibanescu, E. J. Reed, S. G. Johnson, and J. D. Joannopoulos, Phys. Rev. Lett., 2006, 96: 043903

doi: 10.1103/PhysRevLett.96.043903
W. H. Wang, X. Q, Huang, L. Zhou, and C. T. Chan, Opt. Lett., 2008, 33: 369

doi: 10.1364/OL.33.000369
J. Lu, T. Grzegorczyk, Y. Zhang, J. Pacheco Jr., B. I. Wu, J. Kong, and M. Chen, Opt.Express, 2003, 11: 723―734

doi: 10.1364/OE.11.000723
Y. O. Averkov and V. M. Yakovenko, Phys. Rev. B, 2005, 72: 205110

doi: 10.1103/PhysRevB.72.205110
B. I. Wu, J. Lu, J. Kong, and M. Chen, J.Appl. Phys., 2007, 102: 114907

doi: 10.1063/1.2818066
Z. Y. Duan, B. I. Wu, J. Lu, J. A. Kong, and M. Chen, Opt. Express, 2008, 16: 18479

doi: 10.1364/OE.16.018479
N. Engheta, IEEE Antennas Wireless Propag. Lett., 2002, 1: 10

doi: 10.1109/LAWP.2002.802576
L. Zhou, H. Q. Li, Y. Q. Qin, Z. Y. Wei, and C. T. Chan, Appl. Phys. Lett., 2005, 86: 101101

doi: 10.1063/1.1881797
H. Li, J. M. Hao, L. Zhou, Z. Wei, L. Gong, H. Chen, and C. T. Chan, Appl. Phys. Lett., 2006, 89: 104101

doi: 10.1063/1.2338795
U. Leonhardt, Science, 2006, 312: 1777

doi: 10.1126/science.1126493
J. B. Pendry, D. Schurig, and D. R. Smith, Science, 2006, 312: 1780

doi: 10.1126/science.1125907
A. J. Ward and J. B. Pendry, J. Mod. Opt., 1996, 43: 773
M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photon. Nanostruct.Fundam. Appl., 2008, 6: 87

doi: 10.1016/j.photonics.2007.07.013
H. Y. Chen and C. T. Chan, Appl. Phys. Lett., 2007, 90: 241105

doi: 10.1063/1.2748302
M. Yan, W. Yan, and M. Qiu, Phys. Rev. B, 2008, 78: 125113

doi: 10.1103/PhysRevB.78.125113
T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, Opt. Express, 2008, 16: 18545

doi: 10.1364/OE.16.018545
J. M. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett., 2007, 99: 063908

doi: 10.1103/PhysRevLett.99.063908
J. M. Hao and L. Zhou, Phys. Rev. B, 2008, 77: 094201

doi: 10.1103/PhysRevB.77.094201
J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, Phys. Rev. A, 2009, 80: 023807

doi: 10.1103/PhysRevA.80.023807
J. Y. Chin, M. Z. Lu, and T. J. Cui, Appl. Phys. Lett., 2008, 93: 251903

doi: 10.1063/1.3054161
M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, J. Appl. Phys., 2008, 103: 053102
T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett., 2008, 92: 131111

doi: 10.1063/1.2905285
T. Li, H. Liu, S. M. Wang, X. G Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett., 2008, 93: 021110

doi: 10.1063/1.2958214
E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, Phys. Rev. Lett., 2009, 102: 113902

doi: 10.1103/PhysRevLett.102.113902
J. Yelk, M. Sukharev, and T. Seideman, J. Chem. Phys., 2008, 129: 064706

doi: 10.1063/1.2961011
J. X. Cao, H. Liu, T. Li, S. M. Wang, T. Q. Li, S. N. Zhu, and X. Zhang, J. Opt. Soc. Am. B, 2009, 26: B96

doi: 10.1364/JOSAB.26.000B96
J. Y. Chin, J. N. Gollub, J. J. Mock, R. P. Liu, C. Harrison, D. R. Smith, and T. J. Cui, Opt. Express, 2009, 17: 7640

doi: 10.1364/OE.17.007640
D. R. Smith and D. Schurig, Phys. Rev. Lett., 2003, 90: 077405

doi: 10.1103/PhysRevLett.90.077405
L. Zhou, C. T. Chan, and P. Sheng, Phys. Rev. B, 2003, 68: 115424

doi: 10.1103/PhysRevB.68.115424
S. L. Sun, X. Q. Huang, and L. Zhou, Phys. Rev. E, 2007, 75: 066602

doi: 10.1103/PhysRevE.75.066602
L. B. Hu and S. T. Chui, Phys. Rev. B, 2002, 66: 085108

doi: 10.1103/PhysRevB.66.085108
Q. Cheng and T. J. Cui, Appl. Phys. Lett., 2005, 87: 1741102
T. Jiang, J. M. Zhao, and Y. J. Feng, J. Phys. D: Appl. Phys., 2007, 40: 1821
P. Yeh, Optical Wave in Layered Media, NewYork: Wiley, 1988
K. Busch, C. T. Chan, and C. M. Soukoulis, in: Photonic Band GapMaterials, edited by C. M. Soukoulis, Dordrecht: Kluwer, 1996
L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett., 2005, 94: 243905

doi: 10.1103/PhysRevLett.94.243905
For the case of θ ≠ 0°, the electricfield of s-polarized wave has Ee^s=?sin??x^+cos??y^, and the p-polarized wave has Ee^p=cos?θcos??x^+cos?θsin??y^?sin?θz^.
A. Taflove, Computational Electrodynamics: The Finite-Difference-Time-DomainMethod, Norwood: Artech House INC, 2000
D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, Appl. Phys. Lett., 2000, 77: 2246

doi: 10.1063/1.1314884
P. Markos and C. M. Soukoulis, Phys. Rev. E, 2002, 65: 036622

doi: 10.1103/PhysRevE.65.036622
N. Katsarakis, T. Koschny, and M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett., 2004, 84: 2943

doi: 10.1063/1.1695439
D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexópolous, and E. Yablonovitch, IEEE Trans. MicrowaveTheory Tech., 1999, 47: 2059

doi: 10.1109/22.798001
F. Yang and Y. Rahmat-Samii, IEEE Trans. AntennasPropag., 2003, 51: 2691

doi: 10.1109/TAP.2003.817559
H. Mosallaei and K. Sarabandi, IEEE Trans. AntennasPropag., 2004, 52: 2403

doi: 10.1109/TAP.2004.834135
W. J. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, Phys. Rev, Lett., 2002, 89: 223901

doi: 10.1103/PhysRevLett.89.223901
L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, Appl. Phys. Lett., 2003, 83: 3257

doi: 10.1063/1.1622122
J. M. Hao, L. Zhou, and C. T. Chan, Appl. Phys. A, 2007, 87: 281

doi: 10.1007/s00339-006-3825-4
L. D. Landau, E. M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of ContinuousMedia, London: Butterworth-Heinemann Ltd., 1984
D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B, 2002, 65: 195104

doi: 10.1103/PhysRevB.65.195104
V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, J. Nonlinear Opt. Phys.Mater., 2002, 11: 65

doi: 10.1142/S0218863502000833
Uday K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, Opt. Express, 2006, 14: 7872
[1] Yu-Fei Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon[J]. Front. Phys. , 2021, 16(1): 11501-.
[2] Sen Jia, Xingyu Zhou, Chengping Shen. Experimental review of the ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC[J]. Front. Phys. , 2020, 15(6): 64301-.
[3] X.-J. Hao, R.-Y. Yuan, J.-J. Jin, Y. Guo. Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure[J]. Front. Phys. , 2020, 15(3): 33603-.
[4] Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods[J]. Front. Phys. , 2019, 14(6): 63601-.
[5] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[6] Zheng-Yong Song, Qiong-Qiong Chu, Xiao-Peng Shen, Qing Huo Liu. Wideband high-efficient linear polarization rotators[J]. Front. Phys. , 2018, 13(5): 137803-.
[7] Pei Li, Zhao-Meng Gao, Xiu-Shi Huang, Long-Fei Wang, Wei-Feng Zhang, Hai-Zhong Guo. Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction[J]. Front. Phys. , 2018, 13(5): 136803-.
[8] Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature[J]. Front. Phys. , 2018, 13(5): 130321-.
[9] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[10] Yang-Yang Fu, Ya-Dong Xu, Huan-Yang Chen. Negative refraction based on purely imaginary metamaterials[J]. Front. Phys. , 2018, 13(4): 134206-.
[11] Xiang Liu, Wen-Bo Mi. Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study[J]. Front. Phys. , 2018, 13(2): 134204-.
[12] Ting-Hua Li (李廷华),Dong-Lai Zhu(朱东来),Fu-Chun Mao(毛福春),Ming Huang(黄铭),Jing-Jing Yang(杨晶晶),Shou-Bo Li. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Front. Phys. , 2016, 11(5): 110503-.
[13] Cong Xiao,Dingping Li,Zhongshui Ma. Thermoelectric response of spin polarization in Rashba spintronic systems[J]. Front. Phys. , 2016, 11(3): 117201-.
[14] Qinghua Xu. Recent results on nucleon spin structure study at RHIC[J]. Front. Phys. , 2015, 10(6): 101402-.
[15] Jun Xu,Bao-An Li,Wen-Qing Shen,Yin Xia. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions[J]. Front. Phys. , 2015, 10(6): 102501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed