Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2010, Vol. 5 Issue (3) : 319-323    https://doi.org/10.1007/s11467-010-0010-1
Research articles
A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders
Di BAO(鲍迪)1,Efthymios KALLOS1,Wen-xuan TANG(汤文轩)1,Christos ARGYROPOULOS1,Yang HAO(郝阳)1,Tie-jun CUI(崔铁军)2,
1.Department of Electronic Engineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK; 2.State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Southeast University, Nanjing 210096, China;
 Download: PDF(335 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, the properties of cylindrical high permittivity dielectric particles are studied. A design for broadband reduction of the scattering signature of metallic objects is proposed by implementing simplified ground-plane cloaking schemes. The devices are functional in the presence of a ground plane as well as in free space ranging from 4 GHz to 10 GHz. The required dielectric map for the cloak is achieved by means of manipulating the dimensions of the periodically distributed dielectric cylinders embedded in a host medium with a permittivity close to one. The scattering reduction effects are verified through simulation results. The proposed all dielectric cloaks are advantageous over other schemes due to their non-dispersive nature, the broad bandwidth, the low loss, and the ease of fabrication.
Keywords cloak      dielectric cylinders      FFT      gradient index material      
Issue Date: 05 September 2010
 Cite this article:   
Di BAO(鲍迪),Efthymios KALLOS,Wen-xuan TANG(汤文轩), et al. A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders[J]. Front. Phys. , 2010, 5(3): 319-323.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-010-0010-1
https://academic.hep.com.cn/fop/EN/Y2010/V5/I3/319
J. B. Pendry, D. Schurig, and D. R. Smith, Science, 2006, 312: 1780

doi: 10.1126/science.1125907
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science, 2006, 314: 977980

doi: 10.1126/science.1133628
J. Li and J. Pendry, Phy. Rev. Lett., 2008, 101: 203901

doi: 10.1103/PhysRevLett.101.203901
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Science, 2009, 323: 366

doi: 10.1126/science.1166949
T. Z. G. B. Jason Valentine, J. Li, and X. Zhang, Nature Materials, 2009, 8(568): 10
L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, Nature Photonics, 2009, 3: 461

doi: 10.1038/nphoton.2009.117
H. Ma, W. Jiang, X. Yang, X. Zhou, and T. J. Cui, Opt. Express, 2009, 17: 19947

doi: 10.1364/OE.17.019947
E. Kallos, C. Argyropoulos, and Y. Hao, Phys. Rev. A, 2009, 79: 63825

doi: 10.1103/PhysRevA.79.063825
J. Lee, J. Blair, V. Tamma, Q. Wu, S. Rhee, C. Summers, and W. Park, Opt. Express, 2009, 17: 12922

doi: 10.1364/OE.17.012922
C. Walter, IEEE Trans. Antennas Propag., 1960, 8: 508

doi: 10.1109/TAP.1960.1144896
K. Sato and H. Ujiie, Electronics & Communicationsin Japan, Part I: Communications (English Translation of Denshi TsushinGakkai Ronbunshi), 2002, 85: 1
L. Rayleigh, Phil. Mag., 1892, 34: 205
L. Lewin, J. Inst. Elec. Eng., 1947, 94: 65
D. Smith, D. Vier, T. Koschny, and C. Soukoulis, Phys. Rev. E, 2005, 71: 036617

doi: 10.1103/PhysRevE.71.036617
A. Scher and E. Kuester, Metamaterials, 2009, 3: 44

doi: 10.1016/j.metmat.2009.02.001
N. Padilla, Opt. Express, 2009, 17: 14872

doi: 10.1364/OE.17.014872
D. Roberts, N. Kundtz, and D. Smith, Opt. Express, 2009, 17: 16535
R. Liu, Q. Cheng, J. Chin, J. Mock, T. Cui, and D. Smith, Opt. Express, 2009, 17: 21030

doi: 10.1364/OE.17.021030
D. Smith, S. Schultz, P. Marko?, and C. Soukoulis, Phys. Rev. B, 2002, 65: 195104

doi: 10.1103/PhysRevB.65.195104
J. Kim and A. Gopinath, Phys. Rev. B, 2007, 76: 115126

doi: 10.1103/PhysRevB.76.115126
[1] Ting-Hua Li (李廷华),Dong-Lai Zhu(朱东来),Fu-Chun Mao(毛福春),Ming Huang(黄铭),Jing-Jing Yang(杨晶晶),Shou-Bo Li. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Front. Phys. , 2016, 11(5): 110503-.
[2] Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Ying-Jun Li. Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions[J]. Front. Phys. , 2012, 7(4): 481-490.
[3] Guan-xia YU(余观夏), Yang-fan LIN(林扬帆), Gui-qing ZHANG(张贵清), Zi YU(喻孜), Li-li YU(于莉莉), Jun SU(苏峻). Design of square-shaped heat flux cloaks and concentrators using method of coordinate transformation[J]. Front. Phys. , 2011, 6(1): 70-73.
[4] Qiang SU (苏强), Bin LIU (刘斌), Ji-ping HUANG (黄吉平). Remote acoustic cloaks[J]. Front. Phys. , 2011, 6(1): 65-69.
[5] Ya-dong XU(徐亚东), Lei GAO(高雷), Huan-yang CHEN(陈焕阳). Cloak an illusion[J]. Front. Phys. , 2011, 6(1): 61-64.
[6] Yun LAI(赖耘), Jack NG(吴紫辉), Huan-yang CHEN(陈焕阳), Zhao-qing ZHANG(张昭庆), C. T. CHAN(陈子亭), . Illusion optics[J]. Front. Phys. , 2010, 5(3): 308-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed