Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2010, Vol. 5 Issue (3) : 245-259    https://doi.org/10.1007/s11467-010-0105-8
Research articles
Spontaneous emission in micro- and nano-structures
Jing-feng LIU(刘景锋)1,Xue-hua WANG(王雪华)2,
1.State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;College of Science, South China Agriculture University, Guangzhou 510642, China; 2.State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
 Download: PDF(659 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Spontaneous emission of emitters governing the performance of optoelectronic devices is a fundamental phenomenon, and it has strong environment-dependent characteristics. In this article, we mainly review the experimental and theoretical progresses in the control of spontaneous emission by manipulating optical modes with photonic crystals, optical microcavities and metallic nanostructures. The spontaneous emission from emitters in photonic crystals can be modified by the local density of states, and by employing photonic crystals, the devices’ efficiency is enhanced, the angular radiation pattern can be engineered, and highly efficient optoelectronic devices are achieved through decreasing the radiative lifetime. In quantum optical devices, microcavities would alter the lifetime of an excited state through tuning the resonance in the frequency and positioning between the emitters and cavity field, and inducing the emitters to emit spontaneous photons in a desired direction. The emerging enhanced electromagnetic field near metallic nanostructures can help to control and manipulate the spontaneous emission of an emitter. The use of micro- and nano-structures to manipulate spontaneous emission will open unprecedented opportunities for realizing functional photonic devices.
Keywords spontaneous emission      photonic crystals      optical microcavity      metallic nanostructures      local density of states      quantum dots      
Issue Date: 05 September 2010
 Cite this article:   
Jing-feng LIU(刘景锋),Xue-hua WANG(王雪华). Spontaneous emission in micro- and nano-structures[J]. Front. Phys. , 2010, 5(3): 245-259.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-010-0105-8
https://academic.hep.com.cn/fop/EN/Y2010/V5/I3/245
A. Mihi, F. J. Lopez-Alcaraz, and H. Miguez, Appl. Phys. Lett., 2006, 88(19): 193110

doi: 10.1063/1.2200746
A. Mihi, S. Colodrero,M. Calvo,M. Ocana, and H. Miguez, Enhanced Power ConversionEfficiency in Solar Cells Coupled to Photonic Crystals, edited by M. W. Sharon, S. S. Ganapathi, and G. S. Florencio, SPIE, 2007: 664007
Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, Opt. Express, 2009, 17(16): 14312

doi: 10.1364/OE.17.014312
D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, Nano Lett., 2009, 9(7): 2742

doi: 10.1021/nl901232p
S. Colodrero, A. Mihi, J. A. Anta, M. Oca?a, and H. Míguez, J. Phys. Chem. C, 2009, 113(4): 1150

doi: 10.1021/jp809789s
C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Phys. Rev. Lett., 2001, 86: 1502

doi: 10.1103/PhysRevLett.86.1502
C. Santori, D. Fattal, J. Vuckovi?, G. S. Solomon, and Y. Yamamoto, Nature, 2002, 419(6907): 594

doi: 10.1038/nature01086
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science, 2000, 290(5500): 2282

doi: 10.1126/science.290.5500.2282
M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Nature, 2004, 431(7012): 1075

doi: 10.1038/nature02961
W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, Phys. Rev. Lett., 2006, 96: 117401

doi: 10.1103/PhysRevLett.96.117401
S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, Nature Photonics, 2007, 1(12): 704

doi: 10.1038/nphoton.2007.227
M. Toishi, D. Englund, A. Faraon, and J. Vuckovi?, Opt. Express, 2009, 17(17): 14618

doi: 10.1364/OE.17.014618
J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, Nature Photonics, 2010, 4(3): 174

doi: 10.1038/nphoton.2009.287
J. J. Wierer, A. David, and M. M. Megens, Nature Photonics, 2009, 3(3): 163

doi: 10.1038/nphoton.2009.21
H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science, 2004, 305(5689): 1444

doi: 10.1126/science.1100968
E. M. Purcell, H. Torrey, and R. Pound, Phys. Rev., 1946, 69: 681

doi: 10.1103/PhysRev.69.37
E. Yablonovitch, Phys. Rev. Lett., 1987, 58: 2059

doi: 10.1103/PhysRevLett.58.2059
S. John, Phys. Rev. Lett., 1987, 58: 2486

doi: 10.1103/PhysRevLett.58.2486
S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, Science, 2004, 305(5681): 227

doi: 10.1126/science.1097968
P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature, 2004, 430(7000): 654

doi: 10.1038/nature02772
R. A. L. Vallee, K. Baert, B. Kolaric, M. Van der Auweraer, and K. Clays, Phys. Rev. B, 2007, 76(4): 045113

doi: 10.1103/PhysRevB.76.045113
J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, Adv. Mater., 2007, 19(20): 3276

doi: 10.1002/adma.200602054
S. Ogawa, K. Ishizaki, T. Furukawa, and S. Noda, Electron.Lett., 2008, 44(5): 377

doi: 10.1049/el:20083634
M. J. Ventura and M. Gu, Adv. Mater., 2008, 20(7): 1329

doi: 10.1002/adma.200701703
C. Vion, C. Barthou, P. Bénalloul, C. Schwob, L. Coolen, A. Gruzintev, G. Emel'chenko, V. Masalov, J. M. Frigerio, and A. Ma?tre, J. Appl. Phys., 2009, 105(11): 113120

doi: 10.1063/1.3129311
A. Ródenas, G. Zhou, D. Jaque, and M. Gu, Adv. Mater., 2009, 21(34): 3526
N. Chauvin, P. Nedel, C. Seassal, B. Ben Bakir, X. Letartre, M. Gendry, A. Fiore, and P. Viktorovitch, Phys. Rev. B, 2009, 80: 045315

doi: 10.1103/PhysRevB.80.045315
S. John and T. Quang, Phys. Rev. A, 1994, 50: 1764

doi: 10.1103/PhysRevA.50.1764
A. G. Kofman, G. Kurizki, and B. Sherman, J. Mod. Opt., 1994, 41(2): 353

doi: 10.1080/09500349414550381
S. Y. Zhu, H. Chen, and H. Huang, Phys. Rev. Lett., 1997, 79: 205

doi: 10.1103/PhysRevLett.79.205
S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, Phys. Rev. Lett., 2000, 84: 2136

doi: 10.1103/PhysRevLett.84.2136
Z. Y. Li, L. L. Lin, and Z. Q. Zhang, Phys. Rev. Lett., 2000, 84: 4341

doi: 10.1103/PhysRevLett.84.4341
D. G. Angelakis, P. L. Knight, and E. Paspalakis, Contemp. Phys., 2004, 45(4): 303

doi: 10.1080/00107510410001676795
X. H. Wang, R. Wang, B. Y. Gu, and G. Z. Yang, Phys. Rev. Lett., 2002, 88: 093902

doi: 10.1103/PhysRevLett.88.093902
X. H.Wang, B. Y. Gu, R. Wang, and H. Q. Xu, Phys. Rev. Lett., 2003, 91: 113904

doi: 10.1103/PhysRevLett.91.113904
Y. S. Zhou, X. H.Wang, B. Y. Gu, and F. H. Wang, Phys. Rev. E, 2005, 72: 017601

doi: 10.1103/PhysRevE.72.017601
Y. S. Zhou, X. H.Wang, B. Y. Gu, and F. H. Wang, Phys. Rev. Lett., 2006, 96: 103601

doi: 10.1103/PhysRevLett.96.103601
S. C. Cheng, J. N. Wu, M. R. Tsai, and W. F. Hsieh, J. Phys.: Condens. Matter, 2009, 21(1): 015503

doi: 10.1088/0953-8984/21/1/015503
M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Science, 2005, 308(5726): 1296

doi: 10.1126/science.1110417
M. Fujita, S. Takahashi, T. Asano, Y. Tanaka, K. Kounoike, M. Yamaguchi, J. Nakanishi, W. Stumpf, and S. Noda, J. Opt. A, 2006, 8(4): S131
M. Fujita, et al, Controlling Spontaneous Emission Phenomena in Defect-free2-D Photonic Crystals with Quantum Dots, Conference on Lasers andElectro-Optics and 2006 Quantum Electronics and Laser Science Conference,CLEO/QELS, 2006
S. Noda, M. Fujita, and T. Asano, Nature Photonics, 2007, 1(8): 449

doi: 10.1038/nphoton.2007.141
K. J. Vahala, Nature, 2003, 424(6950): 839

doi: 10.1038/nature01939
A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, New York: Oxford University Press Inc., 2007, Chapter 1: 1
P. R. Berman, Cavity Quantum Electrodynamics, SanDiego: Academic Press Inc., 1994: 203―266
J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, Phys. Rev. Lett., 1998, 81: 1110
J. M. Gérard and B. Gayral, J. Lightwave Technol., 1999, 17(11): 2089
G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett., 2001, 86: 3903

doi: 10.1103/PhysRevLett.86.3903
M. Bayer, T. L. Reinecke, F.Weidner, A. Larionov, A. Mc-Donald, and A. Forchel, Phys. Rev. Lett., 2001, 86: 3168

doi: 10.1103/PhysRevLett.86.3168
M. Munsch, A. Mosset, A. Auffèves, S. Seidelin, J. Poizat, J. M. Gérard, A. Lema?tre, I. Sagnes, and P. Senellart, Phys. Rev. B, 2009, 80: 115312

doi: 10.1103/PhysRevB.80.115312
B. Gayral, J. M. Gérard, B. Sermage, A. Lemaitre, and C. Dupuis, Appl. Phys. Lett., 2001, 78(19): 2828

doi: 10.1063/1.1370123
A. Kiraz, P. Michler, C. Becher, B.Gayral, A. Imamo?lu, L. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, Appl. Phys. Lett., 2001, 78(25): 3932

doi: 10.1063/1.1379987
W. Fang, J. Y. Xu, A. Yamilov, H. Cao, Y. Ma, S. T. Ho, and G. S. Solomon, Opt. Lett., 2002, 27(11): 948

doi: 10.1364/OL.27.000948
D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovi?, Phys. Rev. Lett., 2005, 95: 013904
W. C. Stumpf, M. Fujita, M. Yamaguchi, T. Asano, and S. Noda, Appl. Phys. Lett., 2007, 90(23): 231101

doi: 10.1063/1.2746059
D. G. Gevaux, et al, Controlling spontaneous emission from quantum dots usingphotonic crystal microcavities, PhysicaStatus Solidi C – Current Topics in Solid State Physics, Vol3, No 11, edited by M. Stutzmann, Weinheim: Wiley-VCH, 2006, Vol. 3: 3676―3679
H. Mabuchi and A. C. Doherty, Science, 2002, 298(5597): 1372

doi: 10.1126/science.1078446
A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. Mc-Keever, and H. J. Kimble, Phys. Rev. Lett., 2004, 93: 233603

doi: 10.1103/PhysRevLett.93.233603
J. P. Reithmaier, G. Sek, A. L?ffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Nature, 2004, 432(7014): 197

doi: 10.1038/nature02969
S. Münch, S. Reitzenstein, P. Franeck, A. L?ffler, T. Heindel, S. H?fling, L.Worschech, and A. Forchel, Opt. Express, 2009, 17(15): 12821
C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. H?fling, and A. Forchel, Opt. Express, 2008, 16(19): 15006

doi: 10.1364/OE.16.015006
S. Reitzenstein, S. Münch, P. Franeck, A. Rahimi-Iman, A. L?ffler, S. H?fling, L. Worschech, and A. Forchel, Phys. Rev. Lett., 2009, 103: 127401

doi: 10.1103/PhysRevLett.103.127401
E. Peter, P. Senellart, D. Martrou, A. Lema?tre, J. Hours, J. M. Gérard, and J. Bloch, Phys. Rev. Lett., 2005, 95: 067401
B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science, 2008, 319(5866): 1062

doi: 10.1126/science.1152261
K. Srinivasan and O. Painter, Nature, 2007, 450(7171): 862

doi: 10.1038/nature06274
D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovi?, Nature, 2007, 450(7171): 857

doi: 10.1038/nature06234
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature, 2004, 432(7014): 200

doi: 10.1038/nature03119
A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vu?kovi?, Nature Physics, 2008, 4(11): 859

doi: 10.1038/nphys1078
I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, Science, 2008, 320(5877): 769

doi: 10.1126/science.1154643
G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Nature Physics, 2006, 2(2): 81

doi: 10.1038/nphys227
J. P. Reithmaier, Semicond. Sci. Technol., 2008, 23(12): 123001

doi: 10.1088/0268-1242/23/12/123001
A. Neogi, C.W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, Phys. Rev. B, 2002, 66: 153305

doi: 10.1103/PhysRevB.66.153305
J. Feng, T. Okamoto, and S. Kawata, Opt. Lett., 2005, 30(17): 2302

doi: 10.1364/OL.30.002302
A. Neogi, H. Morko?, T. Kuroda, and A. Tackeuchi, Opt. Lett., 2005, 30(1): 93

doi: 10.1364/OL.30.000093
K. Y. Yang, K. C. Choi, and C. W. Ahn, Appl. Phys. Lett., 2009, 94(17): 173301

doi: 10.1063/1.3125249
R. Paiella, Appl. Phys. Lett., 2005, 87(11): 111104

doi: 10.1063/1.2045560
G. Sun, J. B. Khurgin, and R. A. Soref, Appl. Phys. Lett., 2007, 90(11): 111107

doi: 10.1063/1.2539745
D. E. Chang, A. S. S?rensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett., 2006, 97: 053002
D. E. Chang, A. S. S?rensen, E. A. Demler, and M. D. Lukin, Nature Physics, 2007, 3(11): 807

doi: 10.1038/nphys708
A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature, 2007, 450(7168): 402

doi: 10.1038/nature06230
D. E. Chang, A. S. S?rensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. B, 2007, 76: 035420
G. Y. Chen, Y. N. Chen, and D. S. Chuu, Opt. Lett., 2008, 33(19): 2212

doi: 10.1364/OL.33.002212
Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, Phys. Rev. A, 2009, 79: 033815

doi: 10.1103/PhysRevA.79.033815
I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, Opt. Express, 2009, 17(20): 17570

doi: 10.1364/OE.17.017570
A. Trügler and U. Hohenester, Phys. Rev. B, 2008, 77: 115403
A. F. Koenderink, Nano Lett., 2009, 9(12): 4228

doi: 10.1021/nl902439n
X. H. Wang, B. Y. Gu, and Y. S. Kivshar, Sci. Technol. Adv.Mater., 2005, 6(7): 814

doi: 10.1016/j.stam.2005.06.025
E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, Phys. Rev. Lett., 1998, 81: 77

doi: 10.1103/PhysRevLett.81.77
M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, Phys. Rev. A, 1999, 59: 4727

doi: 10.1103/PhysRevA.59.4727
M. Megens, H. P. Schriemer, A. Lagendijk, and W. L. Vos, Phys. Rev. Lett., 1999, 83: 5401

doi: 10.1103/PhysRevLett.83.5401
E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, Phys. Rev. Lett., 1999, 83: 5402

doi: 10.1103/PhysRevLett.83.5402
K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett., 1990, 65: 3152

doi: 10.1103/PhysRevLett.65.3152
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interaction:Basic Processes and Applications, 1992, Chapter 3: 165―256
R. Wang, X. H. Wang, B. Y. Gu, and G. Z. Yang, Phys. Rev. B, 2003, 67: 155114

doi: 10.1103/PhysRevB.67.155114
R. Wang, X. H. Wang, B. Y. Gu, and G. Z. Yang, J. Appl. Phys., 2001, 90(9): 4307

doi: 10.1063/1.1406965
D. Kleppner, Phys. Rev. Lett., 1981, 47: 233

doi: 10.1103/PhysRevLett.47.233
E. Fermi, Rev. Mod. Phys., 1932, 4: 87

doi: 10.1103/RevModPhys.4.87
Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature, 2003, 425(6961): 944

doi: 10.1038/nature02063
S. Hughes, Opt. Lett., 2004, 29(22): 2659

doi: 10.1364/OL.29.002659
V. S. Rao and S. Hughes, Phys. Rev. Lett., 2007, 99: 193901

doi: 10.1103/PhysRevLett.99.193901
V. S. Rao and S. Hughes, Opt. Lett., 2008, 33(14): 1587

doi: 10.1364/OL.33.001587
P. Yao, V. S. C. M. Rao, and S. Hughes, Laser and Photonics Reviews, DOI: 10.1002/lpor.200810081, 2009: 1―18

doi: 10.1002/lpor.200810081
P. Yao and S. Hughes, Phys. Rev. B, 2009, 80: 165128

doi: 10.1103/PhysRevB.80.165128
D. P. Fussell, M. M. Dignam, M. J. Steel, C. M. de Sterke, and R. C. McPhedran, Phys. Rev. A, 2006, 74: 043806

doi: 10.1103/PhysRevA.74.043806
M. Gu, B. Jia, J. Li, and Ventura M. J., Laser & Photonics Reviews, 2009
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, Nature Materies, 2009, 8: 721

doi: 10.1038/nmat2507
A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, Science, 2005, 308(5725): 1158

doi: 10.1126/science.1109815
M. Kaniber, A. Laucht, T. Hürlimann, M. Bichler, R. Meyer, M. C. Amann, and J. Finley, Phys. Rev. B, 2008, 77: 073312
R. A. L. Vallée, K. Baert, B. Kolaric, M. Van der Auweraer, and K. Clays, Phys. Rev. B, 2007, 76: 045113
D. Hippo, K. Urakawa, Y. Tsuchiya, H. Mizuta, N. Koshida, and S. Oda, Mater. Chem. Phys., 2009, 116(1): 107

doi: 10.1016/j.matchemphys.2009.02.051
K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, Electron. Lett., 2005, 41(25): 1402

doi: 10.1049/el:20053011
P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Phys. Rev. Lett., 1983, 50: 1903

doi: 10.1103/PhysRevLett.50.1903
G. Innocenti, G. R. Jacobovitz, P. Mataloni, and P. Mataloni, Phys. Rev. Lett., 1987, 59: 2955

doi: 10.1103/PhysRevLett.59.2955
M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, and A. J. Meixner, ChemPhysChem, 2005, 6(10): 2190

doi: 10.1002/cphc.200500108
M. Schwab, H. Kurtze, T. Auer, T. Berstermann, M. Bayer, J. Wiersig, N. Baer, C. Gies, F. Jahnke, J. Reithmaier, A. Forchel, M. Benyoucef, and P. Michler, Phys. Rev. B, 2006, 74: 045323

doi: 10.1103/PhysRevB.74.045323
A. M. Adawi, A. Cadby, L. G. Connolly, W.C. Hung, R. Dean, A. Tahraoui, A. M. Fox, A. G. Cullis, D. Sanvitto, M. S. Skolnick, and D. G. Lidzey, Adv. Mater., 2006, 18(6): 742

doi: 10.1002/adma.200502099
A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, Appl. Phys. Lett., 2007, 90: 191911

doi: 10.1063/1.2736292
S. Ates, S. M. Ulrich, S. Reitzenstein, A. L?ffler, A. Forchel, and P. Michler, Phys. Rev. Lett., 2009, 103: 167402

doi: 10.1103/PhysRevLett.103.167402
T. D. Happ, I. Tartakovskii, V. Kulakovskii, J.P. Reithmaier, M. Kamp, and A. Forchel, Phys. Rev. B, 2002, 66: 041303

doi: 10.1103/PhysRevB.66.041303
A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. Krenner, R. Meyer, G. B?hm, and J. Finley, Phys. Rev. B, 2005, 71: 241304

doi: 10.1103/PhysRevB.71.241304
M. Kaniber, A. Kress, A. Laucht, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, Appl. Phys. Lett., 2007, 91(6): 061106

doi: 10.1063/1.2757134
M. Kaniber, A. Laucht, A. Neumann, J. Villas-B?as, M. Bichler, M. C. Amann, and J. Finley, Phys. Rev. B, 2008, 77: 161303

doi: 10.1103/PhysRevB.77.161303
S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, Phys. Rev. Lett., 2006, 96: 127404

doi: 10.1103/PhysRevLett.96.127404
L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, Appl. Phys. Lett., 2007, 91(12): 123115

doi: 10.1063/1.2789291
M. Francardi, L. Balet, A. Gerardino, N. Chauvin, D. Bitauld, L. H. Li, B. Alloing, and A. Fiore, Appl. Phys. Lett., 2008, 93(14): 143102

doi: 10.1063/1.2964186
M. Fujita, Y. Tanaka, and S. Noda, IEEE J. Sel. Top. Quantum Electron., 2008, 14(4): 1090

doi: 10.1109/JSTQE.2008.918941
Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. D. Negro, Opt. Express, 2010, 18(3): 2601

doi: 10.1364/OE.18.002601
E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. Smith, Phys. Rev. Lett., 2005, 95: 183901

doi: 10.1103/PhysRevLett.95.183901
C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, Appl. Phys. Lett., 2007, 90(18): 183114

doi: 10.1063/1.2735936
Y. Fedutik, V. V. Temnov, O. Sch?ps, U. Woggon, and M. V. Artemyev, Phys. Rev. Lett., 2007, 99: 136802

doi: 10.1103/PhysRevLett.99.136802
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature, 2009, 461(7264): 629

doi: 10.1038/nature08364
[1] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[2] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[3] Fei Song, Jin-Yu Chen, Zhi-Ping Wang, Ben-Li Yu. Three-dimensional atom localization via spontaneous emission in a four-level atom[J]. Front. Phys. , 2018, 13(5): 134208-.
[4] Xi-Zhou Qin (秦锡洲), Jia-Hao Huang (黄嘉豪), Hong-Hua Zhong (钟宏华), Chaohong Lee (李朝红). Clock frequency estimation under spontaneous emission[J]. Front. Phys. , 2018, 13(1): 130302-.
[5] Shu-Hua Wang, Huai-Song Zhao, Feng Yuan. Quasiparticle scattering interference in the renormalized Hubbard model[J]. Front. Phys. , 2015, 10(1): 107401-.
[6] Ju Wu, Peng Jin. Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy[J]. Front. Phys. , 2015, 10(1): 108101-.
[7] Chun-Zhen Fan, Er-Jun Liang, Ji-Ping Huang. Optical properties of one-dimensional soft photonic crystals with ferrofluids[J]. Front. Phys. , 2013, 8(1): 1-19.
[8] Zhi-Yuan Li. Nanophotonics in China: Overviews and highlights[J]. Front. Phys. , 2012, 7(6): 601-631.
[9] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[10] Zhan-peng HUANG, Xia-xia WAN, Feng YUAN. Local density of states around two nonmagnetic impurities in cuprate superconductors[J]. Front. Phys. , 2011, 6(3): 309-312.
[11] Christoph Stampfer, Stefan Fringes, Johannes Güttinger, Francoise Molitor, Christian Volk, Bernat Terrés, Jan Dauber, Stephan Engels, Stefan Schnez, Arnhild Jacobsen, Susanne Droscher, Thomas Ihn, Klaus Ensslin. Transport in graphene nanostructures[J]. Front. Phys. , 2011, 6(3): 271-293.
[12] Zbigniew FICEK, . Quantum entanglement and disentanglement of multi-atom systems[J]. Front. Phys. , 2010, 5(1): 26-81.
[13] SHAN Guang-cun, BAO Shu-ying, HUANG Wei. Another model for a multiexcitonic quantum dot in an optical microcavity[J]. Front. Phys. , 2007, 2(1): 63-67.
[14] ZHANG Xiang-dong. Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals[J]. Front. Phys. , 2006, 1(4): 396-404.
[15] LIU Can-de, LIU Wen, SU Xi-yu, LI Feng-ling, WU Da-peng. Dynamical behaviors of an exciton in an asymmetric double coupled quantum dot[J]. Front. Phys. , 2006, 1(2): 238-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed