Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (1) : 2-14    https://doi.org/10.1007/s11467-010-0113-8
REVIEW ARTICLE
Preserving qubit coherence by dynamical decoupling
Wen YANG1, Zhen-Yu WANG2, Ren-Bao LIU2()
1. Department of Physics, University of California San Diego, La Jolla, CA 92093-0319, USA; 2. Department of Physics, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
 Download: PDF(314 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In quantum information processing, it is vital to protect the coherence of qubits in noisy environments. Dynamical decoupling (DD), which applies a sequence of flips on qubits and averages the qubit-environment coupling to zero, is a promising strategy compatible with other desired functionalities, such as quantum gates. Here, we review the recent progresses in theories of dynamical decoupling and experimental demonstrations. We give both semiclassical and quantum descriptions of the qubit decoherence due to coupling to noisy environments. Based on the quantum picture, a geometrical interpretation of DD is presented. The periodic Carr-Purcell-Meiboom-Gill DD and the concatenated DD are reviewed, followed by a detailed exploration of the recently developed Uhrig DD, which employs the least number of pulses in an unequally spaced sequence to suppress the qubit-environment coupling to a given order of the evolution time. Some new developments and perspectives are also discussed.

Keywords qubit      decoherence      dynamical decoupling     
Corresponding Author(s): LIU Ren-Bao,Email:rbliu@cuhk.edu.hk   
Issue Date: 05 March 2011
 Cite this article:   
Wen YANG,Zhen-Yu WANG,Ren-Bao LIU. Preserving qubit coherence by dynamical decoupling[J]. Front. Phys. , 2011, 6(1): 2-14.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-010-0113-8
https://academic.hep.com.cn/fop/EN/Y2011/V6/I1/2
1 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
2 D. DiVincenzo, Fortschr. Phys. , 2000, 48: 771
doi: 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
3 R. Kubo, J. Phys. Soc. Jpn. , 1954, 9: 935
doi: 10.1143/JPSJ.9.935
4 P. W. Anderson, J. Phys. Soc. Jpn. , 1954, 9: 316
doi: 10.1143/JPSJ.9.316
5 W. Yao, R. B. Liu, and L. J. Sham, Phys. Rev. B , 2006, 74: 195301
doi: 10.1103/PhysRevB.74.195301
6 I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B , 2002, 65: 205309
doi: 10.1103/PhysRevB.65.205309
7 T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Nature , 2002, 419: 278
doi: 10.1038/nature00976
8 J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature , 2004, 430: 431
doi: 10.1038/nature02693
9 M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, Nature , 2004, 432: 81
doi: 10.1038/nature03008
10 Y. G. Semenov and K.W. Kim, Phys. Rev. B , 2003, 67: 073301
doi: 10.1103/PhysRevB.67.073301
11 C. Deng and X. Hu, Phys. Rev. B , 2006, 73: 241303(R)
doi: 10.1103/PhysRevB.73.241303
12 N. Shenvi, R. de Sousa, and K. B. Whaley, Phys. Rev. B , 2005, 71: 144419
doi: 10.1103/PhysRevB.71.144419
13 W. M. Witzel and S. Das Sarma, Phys. Rev. B , 2006, 74: 035322
doi: 10.1103/PhysRevB.74.035322
14 W. M. Witzel and S. Das Sarma, Phys. Rev. Lett. , 2007, 98: 077601
doi: 10.1103/PhysRevLett.98.077601
15 S. K. Saikin, W. Yao, and L. J. Sham, Phys. Rev. B , 2007, 75: 125314
doi: 10.1103/PhysRevB.75.125314
16 W. Yang and R. B. Liu, Phys. Rev. B , 2008, 78: 085315
doi: 10.1103/PhysRevB.78.085315
17 W. Yang and R. B. Liu, Phys. Rev. B , 2009, 79: 115320
doi: 10.1103/PhysRevB.79.115320
18 L. M. Duan and G. C. Guo, Phys. Rev. Lett. , 1997, 79: 1953
doi: 10.1103/PhysRevLett.79.1953
19 D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. , 1998, 81: 2594
doi: 10.1103/PhysRevLett.81.2594
20 E. L. Hahn, Phys. Rev. , 1950, 80: 580
doi: 10.1103/PhysRev.80.580
21 M. Mehring, Principles of High Resolution NMR in Solids, 2nd Ed., Berlin: Spinger-Verleg, 1983
22 W. K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. Lett. , 1970, 25: 218
doi: 10.1103/PhysRevLett.25.218
23 U. Haeberlen, High Resolution NMR in Solids: Selective Averaging, New York: Academic Press, 1976
24 L. Viola and S. Lloyd, Phys. Rev. A , 1998, 58: 2733
doi: 10.1103/PhysRevA.58.2733
25 M. Ban, J. Mod. Opt. , 1998, 45: 2315
doi: 10.1080/09500349808231241
26 P. Zanardi, Phys. Lett. A , 1999, 258: 77
doi: 10.1016/S0375-9601(99)00365-5
27 L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. , 1999, 82: 2417
doi: 10.1103/PhysRevLett.82.2417
28 L. Viola and E. Knill, Phys. Rev. Lett. , 2005, 94: 060502
doi: 10.1103/PhysRevLett.94.060502
29 O. Kern and G. Alber, Phys. Rev. Lett. , 2005, 95: 250501
doi: 10.1103/PhysRevLett.95.250501
30 K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. , 2005, 95: 180501
doi: 10.1103/PhysRevLett.95.180501
31 K. Khodjasteh and D. A. Lidar, Phys. Rev. A , 2007, 75: 062310
doi: 10.1103/PhysRevA.75.062310
32 L. F. Santos and L. Viola, Phys. Rev. Lett. , 2006, 97: 150501
doi: 10.1103/PhysRevLett.97.150501
33 W. Yao, R. B. Liu, and L. J. Sham, Phys. Rev. Lett. , 2007, 98: 077602
doi: 10.1103/PhysRevLett.98.077602
34 R. B. Liu, W. Yao, and L. J. Sham, New J. Phys. , 2007, 9: 226
doi: 10.1088/1367-2630/9/7/226
35 W. M. Witzel and S. Das Sarma, Phys. Rev. B , 2007, 76: 241303(R)
doi: 10.1103/PhysRevB.76.241303
36 W. X. Zhang, V. V. Dobrovitski, L. F. Santos, L. Viola, and B. N. Harmon, Phys. Rev. B , 2007, 75: 201302(R)
doi: 10.1103/PhysRevB.75.201302
37 G. S. Uhrig, Phys. Rev. Lett. , 2007, 98: 100504
doi: 10.1103/PhysRevLett.98.100504
38 L. Cywiński, R.M. Lutchyn, C. P. Nave, and S. Das Sarma, Phys. Rev. B , 2008, 77: 174509
doi: 10.1103/PhysRevB.77.174509
39 J. J. L. Morton, A. M. Tyryshkin, A. Ardavan, S. C. Benjamin, K. Porfyrakis, S. A. Lyon, and G. A. D. Briggs, Nature Phys. , 2006, 2: 40
doi: 10.1038/nphys192
40 M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, Nature , 2009, 458: 996
doi: 10.1038/nature07951
41 J. F. Du, X. Rong, N. Zhao, Y. Wang, J. H. Yang, and R. B. Liu, Nature , 2009, 461: 1265
doi: 10.1038/nature08470
42 K. Khodjasteh and D. A. Lidar, Phys. Rev. A , 2008, 78: 012355
doi: 10.1103/PhysRevA.78.012355
43 J. R. West, D. A. Lidar, B. H. Fong, M. F. Gyure, X. Peng, and D. Suter, arXiv: 0911.2398 , 2009
44 H. K. Ng, D. A. Lidar, and J. Preskill, arXiv: 0911.3202 , 2009
45 H. Carr and E. M. Purcell, Phys. Rev. , 1954, 94: 630
doi: 10.1103/PhysRev.94.630
46 S. Meiboom and D. Gill, Rev. Sci. Instrum. , 1958, 29: 688
doi: 10.1063/1.1716296
47 M. S. Byrd and D. A. Lidar, Quant. Info. Proc. , 2002, 1: 19
48 B. Lee,W. M. Witzel, and S. Das Sarma, Phys. Rev. Lett. , 2008, 100: 160505
doi: 10.1103/PhysRevLett.100.160505
49 G. S. Uhrig, New J. Phys. , 2008, 10: 083024
doi: 10.1088/1367-2630/10/8/083024
50 W. Yang and R. B. Liu, Phys. Rev. Lett. , 2008, 101: 180403
doi: 10.1103/PhysRevLett.101.180403
51 D. Dhar, L. K. Grover, and S. M. Roy, Phys. Rev. Lett. , 2006, 96: 100405
doi: 10.1103/PhysRevLett.96.100405
52 G. S. Uhrig and D. A. Lidar, Phys. Rev. A , 2010, 82: 012301
doi: 10.1103/PhysRevA.82.012301
53 S. Pasini and G. S. Uhrig, Phys. Rev. A , 2010, 81: 012309
doi: 10.1103/PhysRevA.81.012309
54 W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. , 1990, 62: 867
doi: 10.1103/RevModPhys.62.867
55 S. Pasini and G. S. Uhrig, J. Phys. A: Math. Theor. , 2010, 43: 132001
doi: 10.1088/1751-8113/43/13/132001
56 S. Pasini, T. Fischer, P. Karbach, and G. S. Uhrig, Phys. Rev. A , 2008, 77: 032315
doi: 10.1103/PhysRevA.77.032315
57 S. Pasini and G. S. Uhrig, J. Phys. A: Math. Theor. , 2008, 41: 312005
doi: 10.1088/1751-8113/41/31/312005
58 G. S. Uhrig and S. Pasini, New J. Phys. , 2010, 12: 045001
doi: 10.1088/1367-2630/12/4/045001
59 K. Khodjasteh, D. A. Lidar, and L. Viola, Phys. Rev. Lett. , 2010, 104: 090501
doi: 10.1103/PhysRevLett.104.090501
60 T. E. Hodgson, L. Viola, and I. D’Amico, Phys. Rev. A , 2010, 81: 062321
doi: 10.1103/PhysRevA.81.062321
61 M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, Phys. Rev. A , 2009, 79: 062324
doi: 10.1103/PhysRevA.79.062324
62 H. Uys, M. J. Biercuk, and J. J. Bollinger, Phys. Rev. Lett. , 2009, 103: 040501
doi: 10.1103/PhysRevLett.103.040501
63 G. S. Uhrig, Phys. Rev. Lett. , 2009, 102: 120502
doi: 10.1103/PhysRevLett.102.120502
64 J. R. West, B. H. Fong, and D. A. Lidar, Phys. Rev. Lett. , 2010, 104: 130501
doi: 10.1103/PhysRevLett.104.130501
65 Z. Y. Wang, unpublished
66 M. Mukhtar, T. B. Saw, W. T. Soh, and J. Gong, Phys. Rev. A , 2010, 81: 012331
doi: 10.1103/PhysRevA.81.012331
67 E. R. Jenista, A. M. Stokes, R. T. Branca, and S. Warren, J. Chem. Phys. , 2009, 131: 204510
doi: 10.1063/1.3263196
68 N. Zhao, J. L. Hu, S.W. Ho, J. T. K. Wan, and R. B. Liu, arXiv: 1003.4320 , 2010
69 K. Khodjasteh and D. A. Lidar, Phys. Rev. A , 2003, 68: 022322; Erratum: Phys. Rev. A , 2005, 72: 029905(E)
70 P. Wocjan, M. R?tteler, D. Janzing, and T. Beth, Phys. Rev. A , 2002, 65: 042309
doi: 10.1103/PhysRevA.65.042309
71 G. Gordon, G. Kurizki, and D. A. Lidar, Phys. Rev. Lett. , 2008, 101: 010403
doi: 10.1103/PhysRevLett.101.010403
72 P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K. Wilhelm, Phys. Rev. Lett. , 2009, 102: 090401
doi: 10.1103/PhysRevLett.102.090401
73 K. Khodjasteh and L. Viola, Phys. Rev. Lett. , 2009, 102: 080501
doi: 10.1103/PhysRevLett.102.080501
74 J. Clausen, G. Bensky, and G. Kurizki, Phys. Rev. Lett. , 2010, 104: 040401
doi: 10.1103/PhysRevLett.104.040401
[1] You-Ji Fan, Zhen-Fei Zheng, Yu Zhang, Dao-Ming Lu, Chui-Ping Yang. One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED[J]. Front. Phys. , 2019, 14(2): 21602-.
[2] Hai-Tao Cui (崔海涛),Xue-Xi Yi (衣学喜). Detecting ground-state degeneracy in many-body systems through qubit decoherence[J]. Front. Phys. , 2017, 12(1): 120304-.
[3] Qiao Bi. Quantum computation in triangular decoherence-free subdynamic space[J]. Front. Phys. , 2015, 10(2): 100304-.
[4] Wenxi Lai, Chao Zhang, Zhongshui Ma. Single molecular shuttle-junction: Shot noise and decoherence[J]. Front. Phys. , 2015, 10(1): 108501-.
[5] Jing-Wei Zhou, Peng-Fei Wang, Fa-Zhan Shi, Pu Huang, Xi Kong, Xiang-Kun Xu, Qi Zhang, Zi-Xiang Wang, Xing Rong, Jiang-Feng Du. Quantum information processing and metrology with color centers in diamonds[J]. Front. Phys. , 2014, 9(5): 587-597.
[6] Zhi-Hui Wang, Gang Li, Ya-Li Tian, Tian-Cai Zhang. Quantum state manipulation of single-Cesium-atom qubit in a micro-optical trap[J]. Front. Phys. , 2014, 9(5): 634-639.
[7] Hong-Yi Fan, Shuai Wang, Li-Yun Hu. Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel[J]. Front. Phys. , 2014, 9(1): 74-81.
[8] Alice Sinatra, Jean-Christophe Dornstetter, Yvan Castin. Spin squeezing in Bose–Einstein condensates: Limits imposed by decoherence and non-zero temperature[J]. Front. Phys. , 2012, 7(1): 86-97.
[9] Zbigniew FICEK, . Quantum entanglement and disentanglement of multi-atom systems[J]. Front. Phys. , 2010, 5(1): 26-81.
[10] Hua WEI(魏华), Zhi-jiao DENG(邓志娇), Wan-li YANG(杨万里), Fei ZHOU(周飞). Cavity quantum networks for quantum information processing in decoherence-free subspace[J]. Front Phys Chin, 2009, 4(1): 21-37.
[11] TONG Zhao-yang, LIAO Ping, KUANG Le-man. Quantum repeaters based on CNOT gate under decoherence[J]. Front. Phys. , 2007, 2(4): 389-402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed