|
|
Protein folding as a quantum transition between conformational states |
Liao-fu LUO (罗辽复, ) |
Laboratory of Theoretical Biophysics, Faculty of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China |
|
|
Abstract Assuming that the main variables in the life processes at the molecular level are the conformation of biological macromolecules and their frontier electrons a formalism of quantum theory on conformation-electron system is proposed. Based on the quantum theory of conformation-electron system, the protein folding is regarded as a quantum transition between torsion states on polypeptide chain, and the folding rate is calculated by nonadiabatic operator method. The rate calculation is generalized to the case of frequency variation in folding. An analytical form of protein folding rate formula is obtained, which can be served as a useful tool for further studying protein folding. The application of the rate theory to explain the protein folding experiments is briefly summarized. It includes the inertial moment dependence of folding rate, the unified description of two-state and multistate protein folding, the relationship of folding and unfolding rates versus denaturant concentration, the distinction between exergonic and endergonic foldings, the ultrafast and the downhill folding viewed from quantum folding theory, and, finally, the temperature dependence of folding rate and the interpretation of its non-Arrhenius behaviors. All these studies support the view that the protein folding is essentially a quantum transition between conformational states.
|
Keywords
protein folding rate
quantum transition
torsion states
non-Arrhenius temperature dependence
exergonic and endergonic folding
ultrafast folding
|
Corresponding Author(s):
null,Email:lolfcm@mail.imu.edu.cn
|
Issue Date: 05 March 2011
|
|
1 |
L. F. Luo, Int. J. Quant. Chem. , 1987, 32: 435 doi: 10.1002/qua.560320404
|
2 |
D. Shepelyansky, Symposium Anderson Localization in Nonlinear and Many-Body Systems, Dresden, 2009
|
3 |
J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins , 1995, 21: 167 doi: 10.1002/prot.340210302
|
4 |
K. Huang and A. Rhys, Proc. Roy. Soc. (London) , 1950, A204: 406
|
5 |
D. Devault, Quart. Rev., Biophysics , 1980, 13: 387 doi: 10.1017/S003358350000175X
|
6 |
J. Jortner, J. Chem. Phys. , 1976, 64: 4860 doi: 10.1063/1.432142
|
7 |
M. Abramowitz and I. A. Stegun, Handbook of Mathemat-ical Functions, 10th printing with corrections, National Bureau of Standards, Applied Mathematics Series55, 1972
|
8 |
G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed., Series: Cambridge Mathematical Library, 1995
|
9 |
L. F. Luo, Int. J. Quant. Chem. , 1995, 54: 243 doi: 10.1002/qua.560540407
|
10 |
L. F. Luo, Theoretic-Physical Approach to Molecular Biology, Shanghai: Shanghai Scientific & Technical Publishers, 2004: 437, 457
|
11 |
L. F. Luo, arXiv: qbio/0906.2452 , 2009
|
12 |
L. F. Luo, arXiv: qbio/1008.0237 , 2010
|
13 |
T. Kakitani and H. Kakitani, Biochim. et Biophys. Acta , 1981, 635: 498 doi: 10.1016/0005-2728(81)90109-2
|
14 |
Y. Zhang and L. F. Luo, Scientia Sinica Vitae , 2010, 40: 887, doi: 10.1360/052010-337
|
15 |
K. W Plaxco, T. Simons, and D. Baker, J. Mol. Biol., 1998, 277(4): 985 doi: 10.1006/jmbi.1998.1645
|
16 |
D. N. Ivankov and A. V. Finkelstein, Proc. Natl. Acad. Sci. USA , 2004, 101: 8942 doi: 10.1073/pnas.0402659101
|
17 |
K. Kamagata, M. Arai, and K. Kuwajima, J. Mol. Biol. , 2004, 339: 951 doi: 10.1016/j.jmb.2004.04.015
|
18 |
K. L. Maxwell, D. Wildes, A. Zarrine-Afsar, M. A. De Los Rios, A. G. Brown, C. T. Friel, L. Hedberg, J. C. Horng, D. Bona, E. J. Miller, A. Vallée-Bélisle, E. R. Main, F. BemporadL. Qiu, K. Teilum, N. D. Vu, A. M. Edwards, I. Ruczinski, F. M. Poulsen, B. B. Kragelund, S. W. Michnick, F. Chiti, Y. Bai, S. J. Hagen, L. Serrano, M. Oliveberg, D. P. Raleigh, P. Wittung-Stafshede, S. E. Radford, S. E. Jackson, T. R. Sosnick, S. Marqusee, A. R. Davidson, and K. W. Plaxco, Protein Sci. , 2005, 14(3): 602 doi: 10.1110/ps.041205405
|
19 |
M. Jacob, T. Schindler, J. Balbach, and F. X. Schmid, Proc. Natl. Acad. Sci. USA , 1997, 94 (11): 5622 doi: 10.1073/pnas.94.11.5622
|
20 |
L. Qiu, S. A. Pabit, A. E. Roitberg, and S. J. Hagen, J. Am. Chem. Soc. , 2002, 124(44): 12952 doi: 10.1021/ja0279141
|
21 |
Y. Zhu, D. O. V. Alonso, K. Maki, C. Y. Huang, S. J. Lahr, V. Daggett, H. Roder, W. F. DeGrado, and F. Gai, Proc. Natl. Acad. Sci. USA , 2003, 100: 15486 doi: 10.1073/pnas.2136623100
|
22 |
H. Neuweiler, C. M. Johnson, and A. R. Fersht, Proc. Natl. Acad. Sci. USA , 2009, 106(44): 18569 doi: 10.1073/pnas.0910860106
|
23 |
M. M. Garcia-Mira, M. Sadqi, N. Fischer, J. M. Sanchez-Ruiz, and V. Munoz, Science , 2002, 298: 2191 doi: 10.1126/science.1077809
|
24 |
M. L. Scalley and D. Baker, Proc. Natl. Acad. Sci. USA , 1997, 94: 10636 doi: 10.1073/pnas.94.20.10636
|
25 |
W. Y. Yang and M. Gruebele, Biochemistry , 2004, 43: 13018 doi: 10.1021/bi049113b
|
26 |
K. Ghosh, B. Ozkan, and K. A. Dill, J. Am. Chem. Soc. , 2007, 129: 11920 doi: 10.1021/ja066785b
|
27 |
D. Baker, Nature , 2000, 405: 39 doi: 10.1038/35011000
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|