Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (3) : 294-308    https://doi.org/10.1007/s11467-011-0163-6
REVIEW ARTICLE
Quantum simulation of molecular interaction and dynamics at surfaces
Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜,)
Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(591 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The interaction between molecules and solid surfaces plays important roles in various applications, including catalysis, sensors, nanoelectronics, and solar cells. Surprisingly, a full understanding of molecule–surface interaction at the quantum mechanical level has not been achieved even for very simple molecules, such as water. In this mini-review, we report recent progresses and current status of studies on interaction between representative molecules and surfaces. Taking water/metal, DNA bases/carbon nanotube, and organic dye molecule/oxide as examples, we focus on the understanding on the microstructure, electronic property, and electron–ion dynamics involved in these systems obtained from first-principles quantum mechanical calculations. We find that a quantum mechanical description of molecule–surface interaction is essential for understanding interface phenomenon at the microscopic level, such as wetting. New theoretical developments, including van der Waals density functional and quantum nuclei treatment, improve further our understanding of surface interactions.

Keywords adsorption      quantum simulation      density functional theory      electronic structure      electron dynamics     
Corresponding Author(s): MENG (孟胜) Sheng,Email:smeng@iphy.ac.cn   
Issue Date: 05 September 2011
 Cite this article:   
Zi-jing DING (丁子敬),Yang JIAO (焦扬),Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces[J]. Front. Phys. , 2011, 6(3): 294-308.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0163-6
https://academic.hep.com.cn/fop/EN/Y2011/V6/I3/294
1 M. Gr?tzel, Acc. Chem. Res. , 2009, 42: 1788
doi: 10.1021/ar900141y
2 S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics , 2009, 3: 297
doi: 10.1038/nphoton.2009.69
3 For example, the very popular TIP3P model of water produces an OO distance of 2.75 ? and hydrogen bond angles of -4° and 158° in a water dimer, which are different from the corresponding values in first-principles calculations (2.95 ?, 5°, 125°) and experiment (2.98 ?, -1°, 123°). See S. Meng, Chapter 3, . dissertation, Graduatue School of Chinese Academy of Sciences, Beijing , 2004
4 S. Meng, L. F. Xu, E. G. Wang, and S. W. Gao, Phys. Rev. Lett. , 2002, 89: 176104
doi: 10.1103/PhysRevLett.89.176104
5 S. Meng, E. G. Wang, and S. W. Gao, Phys. Rev. B , 2004, 69: 195404
doi: 10.1103/PhysRevB.69.195404
6 S. Meng, E. G. Wang, C. Frischkorn, M. Wolf, and S. W. Gao, Chem. Phys. Lett. , 2005, 402: 384
doi: 10.1016/j.cplett.2004.12.065
7 J. Ren and S. Meng, J. Am. Chem. Soc. , 2006, 128: 9282
doi: 10.1021/ja061947p
8 J. Ren and S. Meng, Phys. Rev. B , 2008, 77: 054110
doi: 10.1103/PhysRevB.77.054110
9 P. J. Feibelman, Science , 2002, 295: 99
doi: 10.1126/science.1065483
10 J. Carrasco, A. Michaelides, M. Forster, S. Haq, R. Raval, and A. Hodgson, Nat. Mater. , 2009, 8: 427
doi: 10.1038/nmat2403
11 S. Meng, P. Maragakis, C. Papaloukas, and E. Kaxiras, Nano Lett. , 2007, 7, 45
doi: 10.1021/nl0619103
12 S. Meng, W. L. Wang, P. Maragakis, and E. Kaxiras, Nano Lett. , 2007, 7: 2312
doi: 10.1021/nl070953w
13 S. Meng, J. Ren, and E. Kaxiras, Nano Lett. , 2008, 8: 3266
doi: 10.1021/nl801644d
14 S. Meng and E. Kaxiras, Nano Lett. , 2010, 10: 1238
doi: 10.1021/nl100442e
15 J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter , 2002, 14: 2745
doi: 10.1088/0953-8984/14/11/302
16 P. Hohenberg and W. Kohn, Phys. Rev. B , 1964, 136: 864
doi: 10.1103/PhysRev.136.B864
17 W. Kohn and L. J. Sham, Phys. Rev. A , 1965, 140: 1133
doi: 10.1103/PhysRev.140.A1133
18 G. Kresse and J. Furthmüller, Phys. Rev. B , 1996, 54: 11169
doi: 10.1103/PhysRevB.54.11169
19 P. E. Bl?chl, Phys. Rev. B , 1994, 50: 17953
doi: 10.1103/PhysRevB.50.17953
20 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. , 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
21 D. R. Hamann, Phys. Rev. B , 1997, 55: 10157
doi: 10.1103/PhysRevB.55.R10157
22 S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem. , 1999, 75: 889
doi: 10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8
23 N. Troullier and J. L. Martins, Phys. Rev. B , 1991, 43: 1993
doi: 10.1103/PhysRevB.43.1993
24 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. , 1980, 45: 566
doi: 10.1103/PhysRevLett.45.566
25 M. Dion, H. Rydberg, E. Schr?der, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. , 2004, 92: 246401
doi: 10.1103/PhysRevLett.92.246401
26 J. Ren, E. Kaxiras, and S. Meng, Mole. Phys. , 2010, 108: 1829
doi: 10.1080/00268976.2010.491489
27 E. Runge and E. K. U. Gross, Phys. Rev. Lett. , 1984, 52: 997
doi: 10.1103/PhysRevLett.52.997
28 S. Meng and E. Kaxiras, J. Chem. Phys. , 2008, 129: 054110
doi: 10.1063/1.2960628
29 P. A. Thiel and T. E. Madey, Surf. Sci. Rep. , 1987, 7: 211
doi: 10.1016/0167-5729(87)90001-X
30 A. Hodgson and S. Haq, Surf. Sci. Rep. , 2009, 64: 381
doi: 10.1016/j.surfrep.2009.07.001
31 G. Held and D. Menzel, Surf. Sci. , 1994, 316: 92
doi: 10.1016/0039-6028(94)91131-2
32 D. N. Denzler, C. Hess, R. Dudek, S. Wagner, C. Frischkorn, M. Wolf, and G. Ertl, Chem. Phys. Lett. , 2003, 376: 618
doi: 10.1016/S0009-2614(03)01016-9
33 K. Jacobi, K. Bedurftig, Y. Wang, and G. Ertl, Surf. Sci. , 2001, 472: 9
doi: 10.1016/S0039-6028(00)00932-8
34 H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, and A. Nilsson, Phys. Rev. Lett. , 2002, 89: 276102
doi: 10.1103/PhysRevLett.89.276102
35 S. Meng, L. F. Xu, E. G. Wang, S. W. Gao, Phys. Rev. Lett. , 2003, 91: 059602
doi: 10.1103/PhysRevLett.91.059602
36 S. Meng, Surf. Sci. , 2005, 575: 300
doi: 10.1016/j.susc.2004.11.036
37 A. Glebov, A. P. Graham, A. Menzel, and J. P. Toennies, J. Chem. Phys. , 1997, 106: 9382
doi: 10.1063/1.474008
38 S. Haq, J. Harnett, and A. Hodgson, Surf. Sci. , 2002, 505: 171
doi: 10.1016/S0039-6028(02)01152-4
39 S. Nie, P. J. Feibelman, N. C. Bartelt, and K. Thürmer, Phys. Rev. Lett. , 2010, 105: 026102
doi: 10.1103/PhysRevLett.105.026102
40 T. Schiros, S. Haq, H. Ogasawara, O. Takahashi, H. ?str?m, K. Andersson, L. G. M. Pettersson, A. Hodgson, and A. Nilsson, Chem. Phys. Lett. , 2006, 429: 415
doi: 10.1016/j.cplett.2006.08.048
41 G. Held and D. Menzel, Phys. Rev. Lett. , 1995, 74: 4221
doi: 10.1103/PhysRevLett.74.4221
42 M. Morgenstern, T. Michely, and G. Comsa, Phys. Rev. Lett. , 1996, 77: 703
doi: 10.1103/PhysRevLett.77.703
43 T. Yamada, S. Tamamori, H. Okuyama, and T. Aruga, Phys. Rev. Lett. , 2006, 96: 036105
doi: 10.1103/PhysRevLett.96.036105
44 J. J. Yang, S. Meng, L. F. Xu, and E. G. Wang, Phys. Rev. Lett. , 2004, 92: 146102
doi: 10.1103/PhysRevLett.92.146102
45 Y. Yang, S. Meng, and E. G. Wang, Phys. Rev. B , 2006, 74: 245409
doi: 10.1103/PhysRevB.74.245409
46 J. Lee, D. C. Sorescu, K. D. Jordan, and J. T. Yates, J. Phys. Chem. C , 2008, 112: 17672
doi: 10.1021/jp807467x
47 T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Science , 2002, 297: 1850
doi: 10.1126/science.1075095
48 V. A. Ranea, A. Michaelides, R. Ramírez, P. L. de Andres, J. A. Vergés, and D. A. King, Phys. Rev. Lett. , 2004, 92: 136104
doi: 10.1103/PhysRevLett.92.136104
49 S. Meng, E. G. Wang, and S. W. Gao, J. Chem. Phys. , 2003, 119: 7617
doi: 10.1063/1.1617974
50 K. Morgenstern and J. Nieminen, Phys. Rev. Lett. , 2002, 88: 066102
doi: 10.1103/PhysRevLett.88.066102
51 A. Michaelides and K. Morgenstern, Nat. Mater. , 2007, 6: 597
doi: 10.1038/nmat1940
52 S. Meng, E. Kaxiras, and Z. Y. Zhang, J. Chem. Phys. , 2007, 127: 244710
doi: 10.1063/1.2804871
53 M. E. Tuckerman, D. Marx, and M. Parrinello, Nature , 2002, 417: 925
doi: 10.1038/nature00797
54 J. E. Gunn and B. A. Peterson, Astrophys. J. , 1965, 142: 1633
doi: 10.1086/148444
55 D. Marx, M. E. Tuckerman, J. Hütter, and M. Parrinello, Nature , 1999, 397: 601
doi: 10.1038/17579
56 K. Andersson, A. Nikitin, L. G. M. Pettersson, A. Nilsson, and H. Ogasawara, Phys. Rev. Lett. , 2004, 93: 196101
doi: 10.1103/PhysRevLett.93.196101
57 C. Clay, S. Haq, and A. Hodgson, Chem. Phys. Lett. , 2004, 388: 89
doi: 10.1016/j.cplett.2004.02.076
58 X. Z. Li, M. I. J. Probert, A. Alavi, and A. Michaelides, Phys. Rev. Lett. , 2010, 104: 066102
doi: 10.1103/PhysRevLett.104.066102
59 R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Surf. Sci. , 1996, 367: L13
doi: 10.1016/S0039-6028(96)00943-0
60 P. L?fgren, P. Ahlstr?m, D. V. Chakarov, J. Lausmaa, and B. Kasemo, Surf. Sci. , 1996, 367: L19
doi: 10.1016/S0039-6028(96)00944-2
61 S. Meng, Z. Zhang, and E. Kaxiras, Phys. Rev. Lett. , 2006, 97: 036107
doi: 10.1103/PhysRevLett.97.036107
62 M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, Nat. Mater. , 2003, 2: 338
doi: 10.1038/nmat877
63 M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, and D. J. Walls, Science , 2003, 302: 1545
doi: 10.1126/science.1091911
64 B. Gigliotti, B. Sakizzie, D. S. Bethune, R. M. Shelby, and J. N. Cha, Nano Lett. , 2006, 6: 159
doi: 10.1021/nl0518775
65 D. A. Heller, E. S. Jeng, T. K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, and M. S. Strano, Science , 2006, 311: 508
doi: 10.1126/science.1120792
66 Y. Xu, P. E. Pehrsson, L. Chen, R. Zhang, and W. Zhao, J. Phys. Chem. C , 2007, 111: 8638
doi: 10.1021/jp0709611
67 G. O. Gladchenko, M. V. Karachevtsev, V. S. Leontiev, V. A. Valeev, A. Y. Glamazda, A. M. Plokhotnichenko, and S. G. Stepanian, Mole. Phys. , 2006, 104: 3193
doi: 10.1080/00268970601061220
68 H. J. Gao, Y. Kong, D. Cui, and C. S. Ozkan, Nano Lett. , 2003, 3: 471
doi: 10.1021/nl025967a
69 H. J. Gao and Y. Kong, Annu. Rev. Mater. Res. , 2004, 34: 123
doi: 10.1146/annurev.matsci.34.040203.120402
70 T. Okada, T. Kaneko, R. Hatakeyama, and K. Tohji, Chem. Phys. Lett. , 2006, 417: 288
doi: 10.1016/j.cplett.2005.10.030
71 J. D. Watson and F. H. C. Crick, Nature , 1953, 171: 737
doi: 10.1038/171737a0
72 S. Iijima, Nature , 1991, 354: 56
doi: 10.1038/354056a0
73 J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, and M. Meyyappan, Nano Lett. , 2003, 3: 597
doi: 10.1021/nl0340677
74 N. W. S. Kam, Z. A. Liu, and H. J. Dai, Angew. Chem. Int. Ed. , 2006, 45: 577
doi: 10.1002/anie.200503389
75 C. Staii, A. T. Johnson, M. Chen, and A. Gelperin, Nano Lett. , 2005, 5: 1774
doi: 10.1021/nl051261f
76 G. Lu, P. Maragakis, and E. Kaxiras, Nano Lett. , 2005, 5: 897
doi: 10.1021/nl050354u
77 A. Star, E. Tu, J. Niemann, J. P. Gabriel, C. S. Joiner, and C. Valcke, Proc. Natl. Acad. Sci. USA , 2006, 103: 921
doi: 10.1073/pnas.0504146103
78 E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, and M. S. Strano, Nano Lett. , 2006, 6: 371
doi: 10.1021/nl051829k
79 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comp. Chem. , 1983, 4: 187
doi: 10.1002/jcc.540040211
80 A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B , 1998, 102: 3586
81 S. V. Krivov, S. F. Chekmarev, and M. Karplus, Phys. Rev. Lett. , 2002, 88: 038101
doi: 10.1103/PhysRevLett.88.038101
82 R. Elber and M. Karplus, Science , 1987, 235: 318
doi: 10.1126/science.3798113
83 D. J. Wales and H. A. Scheraga, Science , 1999, 285: 1368
doi: 10.1126/science.285.5432.1368
84 D. J. Wales, Science , 2001, 293: 2067
doi: 10.1126/science.1062565
85 F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. , 2005, 95: 186101
doi: 10.1103/PhysRevLett.95.186101
86 J. E. Freund, , Ludwig–Mmaximilians Universit?t München, 1998
87 A. N. Enyashin, S. Gemming, and G. Seifert, Nanotechnology , 2007, 18: 245702
doi: 10.1088/0957-4484/18/24/245702
88 C. Fantini, A. Jorio, A. P. Santos, V. S. T. Peressinotto, and M. A. Pimenta, Chem. Phys. Lett. , 2007, 439: 138
doi: 10.1016/j.cplett.2007.03.085
89 M. Preuss, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. , 2005, 94: 236102
doi: 10.1103/PhysRevLett.94.236102
90 J. Tersoff and D. R. Hamann, Phys. Rev. B , 1985, 31: 805
doi: 10.1103/PhysRevB.31.805
91 M. E. Hughes, E. Brandin, and J. A. Golovchenko, Nano Lett. , 2007, 7: 1191
doi: 10.1021/nl062906u
92 Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Phys. Rev. Lett. , 2005, 94: 087402
doi: 10.1103/PhysRevLett.94.087402
93 J. Rajendra and A. Rodger, Chem. Eur. J. , 2005, 11: 4841
doi: 10.1002/chem.200500093
94 J. Schnadt, P. A. Bruhwiler, L. Patthey, J. N. O’Shea, S. Sodergren, M. Odelius, R. Ahuja, O. Karis, M. Bassler, P. Persson, H. Siegbahn, S. Lunell, and N. Martensson, Nature , 2002, 418: 620
doi: 10.1038/nature00952
95 S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, and J. R. Durrant, J. Am. Chem. Soc. , 2005, 127: 3456
doi: 10.1021/ja0460357
96 J. B. Asbury, E. Hao, Y. Wang, and T. Lian, J. Phys. Chem. B , 2000, 104: 11957
doi: 10.1021/jp002541g
97 C. W. Chang, L. Luo, C. K. Chou, C. F. Lo, C. Y. Lin, C. S. Hung, Y. P. Lee, and E. W. Diau, J. Phys. Chem. C , 2009, 113: 11524
doi: 10.1021/jp810580u
98 L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nat. Mater. , 2010, 9: 741
doi: 10.1038/nmat2806
[1] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[2] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[3] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[4] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[5] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[6] Yang Gao. Semiclassical dynamics and nonlinear charge current[J]. Front. Phys. , 2019, 14(3): 33404-.
[7] Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules[J]. Front. Phys. , 2019, 14(2): 23604-.
[8] Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory[J]. Front. Phys. , 2018, 13(6): 132109-.
[9] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[10] Chen Yang, Ying Chen, Dan Liu, Jinfeng Wang, Cheng Chen, Jiemin Wang, Ye Fan, Shaoming Huang, Weiwei Lei. Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption[J]. Front. Phys. , 2018, 13(4): 138101-.
[11] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[12] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[13] Ya-Hui Mao, Li-Fu Zhang, Hui-Li Wang, Huan Shan, Xiao-Fang Zhai, Zhen-Peng Hu, Ai-Di Zhao, Bing Wang. Epitaxial growth of highly strained antimonene on Ag(111)[J]. Front. Phys. , 2018, 13(3): 138106-.
[14] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[15] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed