Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (2) : 214-219    https://doi.org/10.1007/s11467-011-0172-5
RESEARCH ARTICLE
Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles
Fen LI1,2,3, Ji-jun ZHAO1,2(), Li-xian SUN3()
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China; 2. College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China; 3. Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Dalian 116023, China
 Download: PDF(198 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The hydrogen storage behavior of the TiCr2 and ZrCr2 alloys substituted with the third components (Zr, V, Fe, Ni) have been studied using first-principles calculations. The change of the hydrogen absorption energies caused by metal doping is arising from the charge transfer among the doped alloys interior. Zr and V atoms devoted abundant electrons, leading to a great enhancement of the H absorption energy, while Fe and Ni atoms always accepted electrons, yielding a remarkable decrease of the H absorption energy. The hydrogen diffusion energy barrier is closely correlated with the geometry effect rather than the electronic structure.

Keywords alloy      hydrogen storage      doping      first-principles     
Corresponding Author(s): ZHAO Ji-jun,Email:zhaojj@dlut.edu.cn; SUN Li-xian,Email:lxsun@dicp.ac.cn   
Issue Date: 05 June 2011
 Cite this article:   
Fen LI,Ji-jun ZHAO,Li-xian SUN. Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles[J]. Front. Phys. , 2011, 6(2): 214-219.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0172-5
https://academic.hep.com.cn/fop/EN/Y2011/V6/I2/214
1 Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2005, 94(15): 155504
doi: 10.1103/PhysRevLett.94.155504
2 M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett. , 2009, 9(5): 1944
doi: 10.1021/nl900116q
3 J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed. , 2005, 44(30): 4670
doi: 10.1002/anie.200462786
4 D. J. Collins and H. C. Zhou, J. Mater. Chem. , 2007, 17(30): 3154
doi: 10.1039/b702858j
5 L. J. Murray, M. Dinc?, and J. R. Long, Chem. Soc. Rev. , 2009, 38(5): 1294
doi: 10.1039/b802256a
6 S. S. Han, H. Furukawa, O. M. Yaghi, and Goddard, J. Am. Chem. Soc. , 2008, 130(35): 11580
doi: 10.1021/ja803247y
7 H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc. , 2009, 131(25): 8875
doi: 10.1021/ja9015765
8 L. Zaluski and A. Zaluska, J. Alloys Comp. , 1997, 253(1-2): 70
9 L. Schlapbach and A. Züttel, Nature , 2001, 414(6861): 353
doi: 10.1038/35104634
10 D. Ohlendorf and H. E. Flotow, J. Chem. Phys. , 1980, 73(6): 2937
doi: 10.1063/1.440467
11 S. Srivastava and O. N. Srivastava, J. Alloys Comp. , 1999, 290: 250
12 K. Tatsumi, I. Tanaka, H. Inui, K. Tanaka, M. Yamaguchi, and H. Adachi, Phys. Rew. B , 2001, 64(18): 184105
doi: 10.1103/PhysRevB.64.184105
13 J. H. Sanders and B. J. Tatarchuk, J. Less Common Met. , 1989, 147(2): 277
doi: 10.1016/0022-5088(89)90201-4
14 J. H. Woo and K. S. Lee, J. Electrochem. Soc. , 1999, 146(3): 819
doi: 10.1149/1.1391687
15 Y. H. Zhang, X. P. Dong, D. L. Zhao, S. H. Guo, Y. Qi, and X. L. Wang, Trans. Nonferrous Met. Soc. , 2008, 18(4): 857
doi: 10.1016/S1003-6326(08)60149-1
16 Y. H. Xu, C. P. Chen, X. L. Wang, Y. Q. Lei, and Q. D. Wang, J. Alloys Comp. , 2002, 337: 214
17 N. Mani and S. Ramaprabhu, Int. J. Hydrogen Energy , 2005, 30(1): 53
doi: 10.1016/j.ijhydene.2004.03.027
18 C. Iwakura, H. Kasuga, I. Kim, H. Inoue, and M. Matsuoka, Electrochim. Acta , 1996, 41: 2694
19 Y. F. Liu, H. G. Pan, M. X. Gao, Y. F. Zhu, and Y. Q. Lei, J. Alloys Comp. , 2004, 365: 246
20 S. Vivet, J. M. Joubert, B. Knosp, P. Ochin, and A. P. Guégan, J. Alloys Comp. , 2008, 465: 517
21 Y. H. Zhanga, D. L. Zhao, B. W. Li, X. L. Zhao, Z. W. Wu, and X. L. Wang, Int. J. Hydrogen Energy , 2008, 33: 1868
doi: 10.1016/j.ijhydene.2008.01.016
22 S. L. Li, P. Wang, W. Chena, G. Luo, D. M. Chen, and K. Yang, J. Alloys Comp. , 2009, 485: 867
23 Y. Li, D. Han, S. M. Han, X. L. Zhu, L. Hu, Z. Zhang, and Y. W. Liu, Int. J. Hydrogen Energy , 2009, 34(3): 1399
doi: 10.1016/j.ijhydene.2008.11.049
24 L. Zaluski, A. Zaluska, P. Tessier, J. O. Str?m-Olsen, and R. J. Schulz, Mater. Sci. , 1996, 31: 695
doi: 10.1007/BF00367887
25 H. Miyamura, M. Takada, K. Hirose, and S. Kikuchi, J. Alloys Comp. , 2003, 356-357: 755
26 T. Kondo, K. Shindo, and Y. Sakurai, J. Alloys Comp. , 2005, 404-406: 511
27 L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, and I. Okonsk, Renew. Energy , 2008, 33(2): 201
doi: 10.1016/j.renene.2007.05.006
28 D. H. Xie, P. Li, C. X. Zeng, J. W. Sun, and X. H. Qu, J. Alloys Comp. , 2009, 478: 96
29 Y. H. Zhang, H. P. Ren, S. H. Guo, Z. G. Pang, Y. Qi, and X. L. Wang, J. Alloys Comp. , 2009, 480: 750
30 Z. M. Wang, H. Y. Zhou, Z. F. Gu, G. Cheng, and A. B. Yu, J. Alloys Comp. , 2004, 381(1-2): 234
31 X. Y. Song, Y. Chen, Z. Zhang, Y. Q. Lei, X. B. Zhang, and Q. D. Wang, Int. J. Hydrogen Energy , 2000, 25(7): 649
doi: 10.1016/S0360-3199(99)00080-4
32 J. L. Bobet and B. Darriet, Int. J. Hydrogen Energy , 2000, 25(8): 767
doi: 10.1016/S0360-3199(99)00101-9
33 W. E. Triaca, H. A. Peretti, H. L. Corso, A. Bonesi, and A. Visintin, J. Power Energy , 2003, 113: 151
34 T. Z. Huang, Z. Wu, B. J. Xia, and T. S. Huang, Mater. Chem. Phys. , 2005, 93: 544
doi: 10.1016/j.matchemphys.2005.04.004
35 M. Kandavel, V. V. Bhat, A. Rougier, L. Aymarda, G. A. Nazri, and J. M. Tarascon, Int. J. Hydrogen Energy , 2008, 33(14): 3754
doi: 10.1016/j.ijhydene.2008.04.042
36 K. Young, T. Ouchi, J. Koch, and M. A. Fetcenko, J. Alloys Comp. , 2009, 477: 749
37 R. J. Zhang, Y. M. Wang, D. M. Chen, R. Yang, and K. Yang, Acta Mater. , 2006, 54(2): 465
doi: 10.1016/j.actamat.2005.09.027
38 Q. Li, Q. Lin, K. C. Chou, L. J. Jiang, and K. D. Xu, J. Alloys Comp. , 2005, 397: 68
39 S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, D. O. Northwood, J. Alloys Comp. , 1990, 293: 10
40 D. J. Davidson, S. S. Sai Raman, M. V. Lototskyc, and O. N. Srivastava, Int. J. Hydrogen Energy , 2003, 28(12): 1425
doi: 10.1016/S0360-3199(02)00194-5
41 S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, and D. O. Northwood, Int. J. Hydrogen Energy , 2000, 25(2): 143
doi: 10.1016/S0360-3199(99)00032-4
42 F. Li, J. J. Zhao, D. X. Tian, H. L. Zhang, X. Z. Ke, and B. Johansson, J. Appl. Phys. , 2009, 105(4): 043707
doi: 10.1063/1.3081636
43 M. C. Payne, M. P. Teter, D. C. Alan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. , 1992, 64(4): 1045
doi: 10.1103/RevModPhys.64.1045
44 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr. , 2005, 220(5-6): 567
doi: 10.1524/zkri.220.5.567.65075
45 J. P. Perdew and Y. Wang, Phys. Rev. B , 1992, 45(23): 13244
doi: 10.1103/PhysRevB.45.13244
46 M. R. Johnson, K. Parlinski, I. Natkaniec, and B. S. Hudson, Chem. Phys. , 2003, 291(1): 53
doi: 10.1016/S0301-0104(03)00178-2
47 D. Vanderbilt, Phys. Rev. B , 1990, 41(11): 7892
doi: 10.1103/PhysRevB.41.7892
48 T. Z. Huang, Z. Wu, B. J. Xia, and N. X. Xu, Mater. Sci. Eng. A , 2005, 397: 284
doi: 10.1016/j.msea.2005.02.046
49 J. L. Soubeyroux, M. Bououdina, D. Fruchart, and P. D. Range, J. Alloys Comp. , 1995, 231(1-2): 760
50 L. Pauling, General Chemistry, 3rd Ed., San Francisco: W. H. Freeman Press, 1970
[1] Hui Zeng, Meng Wu, Hui-Qiong Wang, Jin-Cheng Zheng, Junyong Kang. Tuning the magnetic and electronic properties of strontium titanate by carbon doping[J]. Front. Phys. , 2021, 16(4): 43501-.
[2] Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures[J]. Front. Phys. , 2021, 16(3): 33501-.
[3] Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan. Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking[J]. Front. Phys. , 2020, 15(6): 63503-.
[4] Zhi-Min Liu, Ye Yang, Yue-Shao Zheng, Qin-Jun Chen, Ye-Xin Feng. Isotropic or anisotropic screening in black phosphorous: Can doping tip the balance?[J]. Front. Phys. , 2020, 15(5): 53501-.
[5] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[6] Ping Yang, Li-Xin Zhang. A theoretical study of step edge geometry on sapphire(0001) and its effect on ZnO nucleation[J]. Front. Phys. , 2019, 14(2): 23606-.
[7] Ling-Ling Wang, Jia-Nan Chu, Xuan Zhang, Yong-Hui Ma, Qiu-Cheng Ji, Wei Li, Hui Zhang, Gang Mu, Xiao-Ming Xie. Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3[J]. Front. Phys. , 2019, 14(1): 13604-.
[8] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[9] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[10] Qian Gao (高乾), Hui-Li Wang (王会丽), Li-Fu Zhang (张丽芙), Shuang-Lin Hu (胡双林), Zhen-Peng Hu (胡振芃). Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets[J]. Front. Phys. , 2018, 13(3): 138108-.
[11] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[12] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[13] Qian Chen,Xiaohui Yang,Xiaojun Yang,Jian Chen,Chenyi Shen,Pan Zhang,Yupeng Li,Qian Tao,Zhu-An Xu. Enhanced superconductivity in hole-doped Nb2PdS5[J]. Front. Phys. , 2017, 12(5): 127402-.
[14] Kun Peng Dou (豆坤鵬),Chao-Cheng Kaun (關肇正). Conductance switching of a phthalocyanine molecule on an insulating surface[J]. Front. Phys. , 2017, 12(4): 127303-.
[15] Jingzhao Zhang,Kinfai Tse,Manhoi Wong,Yiou Zhang,Junyi Zhu. A brief review of co-doping[J]. Front. Phys. , 2016, 11(6): 117405-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed