|
|
Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles |
Fen LI1,2,3, Ji-jun ZHAO1,2( ), Li-xian SUN3( ) |
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China; 2. College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China; 3. Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Dalian 116023, China |
|
|
Abstract The hydrogen storage behavior of the TiCr2 and ZrCr2 alloys substituted with the third components (Zr, V, Fe, Ni) have been studied using first-principles calculations. The change of the hydrogen absorption energies caused by metal doping is arising from the charge transfer among the doped alloys interior. Zr and V atoms devoted abundant electrons, leading to a great enhancement of the H absorption energy, while Fe and Ni atoms always accepted electrons, yielding a remarkable decrease of the H absorption energy. The hydrogen diffusion energy barrier is closely correlated with the geometry effect rather than the electronic structure.
|
Keywords
alloy
hydrogen storage
doping
first-principles
|
Corresponding Author(s):
ZHAO Ji-jun,Email:zhaojj@dlut.edu.cn; SUN Li-xian,Email:lxsun@dicp.ac.cn
|
Issue Date: 05 June 2011
|
|
1 |
Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2005, 94(15): 155504 doi: 10.1103/PhysRevLett.94.155504
|
2 |
M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett. , 2009, 9(5): 1944 doi: 10.1021/nl900116q
|
3 |
J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed. , 2005, 44(30): 4670 doi: 10.1002/anie.200462786
|
4 |
D. J. Collins and H. C. Zhou, J. Mater. Chem. , 2007, 17(30): 3154 doi: 10.1039/b702858j
|
5 |
L. J. Murray, M. Dinc?, and J. R. Long, Chem. Soc. Rev. , 2009, 38(5): 1294 doi: 10.1039/b802256a
|
6 |
S. S. Han, H. Furukawa, O. M. Yaghi, and Goddard, J. Am. Chem. Soc. , 2008, 130(35): 11580 doi: 10.1021/ja803247y
|
7 |
H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc. , 2009, 131(25): 8875 doi: 10.1021/ja9015765
|
8 |
L. Zaluski and A. Zaluska, J. Alloys Comp. , 1997, 253(1-2): 70
|
9 |
L. Schlapbach and A. Züttel, Nature , 2001, 414(6861): 353 doi: 10.1038/35104634
|
10 |
D. Ohlendorf and H. E. Flotow, J. Chem. Phys. , 1980, 73(6): 2937 doi: 10.1063/1.440467
|
11 |
S. Srivastava and O. N. Srivastava, J. Alloys Comp. , 1999, 290: 250
|
12 |
K. Tatsumi, I. Tanaka, H. Inui, K. Tanaka, M. Yamaguchi, and H. Adachi, Phys. Rew. B , 2001, 64(18): 184105 doi: 10.1103/PhysRevB.64.184105
|
13 |
J. H. Sanders and B. J. Tatarchuk, J. Less Common Met. , 1989, 147(2): 277 doi: 10.1016/0022-5088(89)90201-4
|
14 |
J. H. Woo and K. S. Lee, J. Electrochem. Soc. , 1999, 146(3): 819 doi: 10.1149/1.1391687
|
15 |
Y. H. Zhang, X. P. Dong, D. L. Zhao, S. H. Guo, Y. Qi, and X. L. Wang, Trans. Nonferrous Met. Soc. , 2008, 18(4): 857 doi: 10.1016/S1003-6326(08)60149-1
|
16 |
Y. H. Xu, C. P. Chen, X. L. Wang, Y. Q. Lei, and Q. D. Wang, J. Alloys Comp. , 2002, 337: 214
|
17 |
N. Mani and S. Ramaprabhu, Int. J. Hydrogen Energy , 2005, 30(1): 53 doi: 10.1016/j.ijhydene.2004.03.027
|
18 |
C. Iwakura, H. Kasuga, I. Kim, H. Inoue, and M. Matsuoka, Electrochim. Acta , 1996, 41: 2694
|
19 |
Y. F. Liu, H. G. Pan, M. X. Gao, Y. F. Zhu, and Y. Q. Lei, J. Alloys Comp. , 2004, 365: 246
|
20 |
S. Vivet, J. M. Joubert, B. Knosp, P. Ochin, and A. P. Guégan, J. Alloys Comp. , 2008, 465: 517
|
21 |
Y. H. Zhanga, D. L. Zhao, B. W. Li, X. L. Zhao, Z. W. Wu, and X. L. Wang, Int. J. Hydrogen Energy , 2008, 33: 1868 doi: 10.1016/j.ijhydene.2008.01.016
|
22 |
S. L. Li, P. Wang, W. Chena, G. Luo, D. M. Chen, and K. Yang, J. Alloys Comp. , 2009, 485: 867
|
23 |
Y. Li, D. Han, S. M. Han, X. L. Zhu, L. Hu, Z. Zhang, and Y. W. Liu, Int. J. Hydrogen Energy , 2009, 34(3): 1399 doi: 10.1016/j.ijhydene.2008.11.049
|
24 |
L. Zaluski, A. Zaluska, P. Tessier, J. O. Str?m-Olsen, and R. J. Schulz, Mater. Sci. , 1996, 31: 695 doi: 10.1007/BF00367887
|
25 |
H. Miyamura, M. Takada, K. Hirose, and S. Kikuchi, J. Alloys Comp. , 2003, 356-357: 755
|
26 |
T. Kondo, K. Shindo, and Y. Sakurai, J. Alloys Comp. , 2005, 404-406: 511
|
27 |
L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, and I. Okonsk, Renew. Energy , 2008, 33(2): 201 doi: 10.1016/j.renene.2007.05.006
|
28 |
D. H. Xie, P. Li, C. X. Zeng, J. W. Sun, and X. H. Qu, J. Alloys Comp. , 2009, 478: 96
|
29 |
Y. H. Zhang, H. P. Ren, S. H. Guo, Z. G. Pang, Y. Qi, and X. L. Wang, J. Alloys Comp. , 2009, 480: 750
|
30 |
Z. M. Wang, H. Y. Zhou, Z. F. Gu, G. Cheng, and A. B. Yu, J. Alloys Comp. , 2004, 381(1-2): 234
|
31 |
X. Y. Song, Y. Chen, Z. Zhang, Y. Q. Lei, X. B. Zhang, and Q. D. Wang, Int. J. Hydrogen Energy , 2000, 25(7): 649 doi: 10.1016/S0360-3199(99)00080-4
|
32 |
J. L. Bobet and B. Darriet, Int. J. Hydrogen Energy , 2000, 25(8): 767 doi: 10.1016/S0360-3199(99)00101-9
|
33 |
W. E. Triaca, H. A. Peretti, H. L. Corso, A. Bonesi, and A. Visintin, J. Power Energy , 2003, 113: 151
|
34 |
T. Z. Huang, Z. Wu, B. J. Xia, and T. S. Huang, Mater. Chem. Phys. , 2005, 93: 544 doi: 10.1016/j.matchemphys.2005.04.004
|
35 |
M. Kandavel, V. V. Bhat, A. Rougier, L. Aymarda, G. A. Nazri, and J. M. Tarascon, Int. J. Hydrogen Energy , 2008, 33(14): 3754 doi: 10.1016/j.ijhydene.2008.04.042
|
36 |
K. Young, T. Ouchi, J. Koch, and M. A. Fetcenko, J. Alloys Comp. , 2009, 477: 749
|
37 |
R. J. Zhang, Y. M. Wang, D. M. Chen, R. Yang, and K. Yang, Acta Mater. , 2006, 54(2): 465 doi: 10.1016/j.actamat.2005.09.027
|
38 |
Q. Li, Q. Lin, K. C. Chou, L. J. Jiang, and K. D. Xu, J. Alloys Comp. , 2005, 397: 68
|
39 |
S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, D. O. Northwood, J. Alloys Comp. , 1990, 293: 10
|
40 |
D. J. Davidson, S. S. Sai Raman, M. V. Lototskyc, and O. N. Srivastava, Int. J. Hydrogen Energy , 2003, 28(12): 1425 doi: 10.1016/S0360-3199(02)00194-5
|
41 |
S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, and D. O. Northwood, Int. J. Hydrogen Energy , 2000, 25(2): 143 doi: 10.1016/S0360-3199(99)00032-4
|
42 |
F. Li, J. J. Zhao, D. X. Tian, H. L. Zhang, X. Z. Ke, and B. Johansson, J. Appl. Phys. , 2009, 105(4): 043707 doi: 10.1063/1.3081636
|
43 |
M. C. Payne, M. P. Teter, D. C. Alan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. , 1992, 64(4): 1045 doi: 10.1103/RevModPhys.64.1045
|
44 |
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr. , 2005, 220(5-6): 567 doi: 10.1524/zkri.220.5.567.65075
|
45 |
J. P. Perdew and Y. Wang, Phys. Rev. B , 1992, 45(23): 13244 doi: 10.1103/PhysRevB.45.13244
|
46 |
M. R. Johnson, K. Parlinski, I. Natkaniec, and B. S. Hudson, Chem. Phys. , 2003, 291(1): 53 doi: 10.1016/S0301-0104(03)00178-2
|
47 |
D. Vanderbilt, Phys. Rev. B , 1990, 41(11): 7892 doi: 10.1103/PhysRevB.41.7892
|
48 |
T. Z. Huang, Z. Wu, B. J. Xia, and N. X. Xu, Mater. Sci. Eng. A , 2005, 397: 284 doi: 10.1016/j.msea.2005.02.046
|
49 |
J. L. Soubeyroux, M. Bououdina, D. Fruchart, and P. D. Range, J. Alloys Comp. , 1995, 231(1-2): 760
|
50 |
L. Pauling, General Chemistry, 3rd Ed., San Francisco: W. H. Freeman Press, 1970
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|