Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (2) : 162-176    https://doi.org/10.1007/s11467-011-0174-3
REVIEW ARTICLE
Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review
Zhi-wei ZHANG (张志伟), Jian-chen LI (李建忱,), Qing JIANG (蒋青,)
Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
 Download: PDF(502 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review covers structural, electronic, and hydrogen storage properties of carbon-based materials with doped metals under electric fields with different orientations and intensities, which are determined by density functional theory (DFT) simulations. The special application case is considered in investigating variations of electronic structures, binding, and hydrogen storage properties. External fields that are often met in practical applications lead to changes of the above properties.

Keywords hydrogen storage materials      electric field      first-principles calculations     
Corresponding Author(s): Jian-chen LI (李建忱),Email:ljc@jlu.edu.cn; Qing JIANG (蒋青),Email:jiangq@jlu.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Zhi-wei ZHANG (张志伟),Jian-chen LI (李建忱),Qing JIANG (蒋青). Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review[J]. Front. Phys. , 2011, 6(2): 162-176.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0174-3
https://academic.hep.com.cn/fop/EN/Y2011/V6/I2/162
1 S. A. Shevlin and Z. X. Guo, Chem. Soc. Rev. , 2009, 28(1): 211
2 A. Züttel, Mater. Today , 2003, 6(9): 24
3 R. Coontz and R. Hanson, Science , 2004, 305(5686): 957
4 A. Züttel and S. Orimo, MRS Bull. , 2002, 27(9): 705
5 S. Banerjee, S. Murad, and I. K. Puri, Proc. IEEE , 2006, 94(10): 1806
6 Q. Sun, P. Jena, Q. Wang, and M. J. Marquez, J. Am. Chem. Soc. , 2006, 128(30): 9741
7 J. F. Stampfer, C. E. Holley, and J. F. Suttle, J. Am. Chem. Soc. , 1960, 82(14): 3504
8 S. H. Jhi, Phys. Rev. B , 2006, 74(15): 155424
9 G. E. Froudakis, Nano Lett. , 2001, 1(10): 531
10 I. Cabria, M. J. López, and J. A. Alonso, J. Chem. Phys. , 2005, 123(20): 204721
11 S. H. Jhi, Catal. Today , 2007, 120(3-4): 383
12 X. J. Wu, Y. Gao, and X. C. Zeng, J. Phys. Chem. C , 2008, 112(22): 8458
13 L. Chen, Y. Zhang, N. Koratkar, P. Jena, and S. K. Nayak, Phys. Rev. B , 2008, 77(3): 033405
14 C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, Science , 1999, 286(5442): 1127
15 O. V. Pupysheva, A. A. Farajian, and B. I. Yakobson, Nano Lett. , 2008, 8(3): 767
16 K. R. S. Chandrakumar and S. K. Ghosh, Nano Lett. , 2008, 8(1): 13
17 M. I. Rojas and E. P. M. Leiva, Phys. Rev. B , 2007, 76(15): 155415
18 J. B. Oostinga, H. B. Heersche, X. L. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater. , 2008, 7(2): 151
19 A. K. Geim and K. S. Novoselov, Nat. Mater. , 2007, 6(3): 183
20 A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, Phys. Rev. Lett. , 2008, 101(3): 036808
21 L. Schlapbach and A. Züttel, Nature , 2001, 414(6861): 353
22 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science , 2004, 306(5696): 666
23 S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine, and G. Seifert, Proc. Natl. Acad. Sci. USA , 2005, 102(30): 10439
24 E. Durgun, S. Ciraci, and T. Yildirim, Phys. Rev. B , 2008, 77(8): 085405
25 T. Roman, W. A. Dino, H. Nakanishi, H. Kasai, T. Sugimoto, and K. Tange, Carbon , 2007, 45(1): 218
26 D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotechnol. , 2008, 3(2): 101
27 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science , 2008, 321(5887): 385
28 U. Sahaym and M. G. Norton, J. Mater. Sci. , 2008, 43(16): 5395
29 S. Orimo, A. Züttel, L. Schlapbach, G. Majer, T. Fukunaga, and H. Fujii, J. Alloys Comp. , 2003, 356: 716
30 W. Liu, Y. H. Zhao, Y. Li, Q. Jiang, and E. J. Lavernia, J. Phys. Chem. C , 2009, 113(5): 2028
31 E. Klontzas, A. Mavrandonakis, E. Tylianakis, and G. E. Froudakis, Nano Lett. , 2008, 8(6): 1572
32 W. Q. Deng, X. Xu, and W. A. Goddard, Phys. Rev. Lett. , 2004, 92(16): 166103
33 E. Durgun, S. Ciraci, W. Zhou, and T. Yildirim, Phys. Rev. Lett. , 2006, 97(22): 226102
34 Z. M. Ao and F. M. Peeters, Phys. Rev. B , 2010, 81(20): 205406
35 Z. W. Zhang, J. C. Li, and Q. Jiang, J. Phys. Chem. C , 2010, 114(17): 7733
36 G. Mpourmpakis, E. Tylianakis, and G. E. Froudakis, Nano Lett. , 2007, 7(7): 1893
37 A. Nikitin, X. Li, Z. Zhang, H. Ogasawara, H. Dai, and A. Nilsson, Nano Lett. , 2008, 8(1): 162
38 C. Ataca, E. Akturk, S. Ciraci, and H. Ustunel, Appl. Phys. Lett. , 2008, 93(4): 043123
39 Z. M. Ao, Q. Jiang, R. Q. Zhang, T. T. Tan, and S. Li, J. Appl. Phys. , 2009, 105(7): 074307
40 P. Chen, X. Wu, J. Lin, and K. L. Tan, Science , 1999, 285(5424): 91
41 R. T. Yang, Carbon , 2000, 38(4): 623
42 F. E. Pinkerton, B. G. Wicke, C. H. Olk, G. G. Tibbetts, G. P. Meisner, M. S. Meyer, and J. F. Herbst, J. Phys. Chem. B , 2000, 104(40): 9460
43 T. Yildirim and S. Ciraci, Phys. Rev. Lett. , 2005, 94(17): 175501
44 Z. Zhou, J. J. Zhao, X. P. Gao, Z. F. Chen, J. Yan, P. R. Schleyer, and M. Morinaga, Chem. Mater. , 2005, 17(5): 992
45 S. Dag, Y. Ozturk, S. Ciraci, and T. Yildirim, Phys. Rev. B , 2005, 72(15): 155404
46 J. W. Lee, H. S. Kim, J. Y. Lee, and J. K. Kang, Appl. Phys. Lett. , 2006, 88(14): 143126
47 Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. , 2005, 127(42): 14582
48 B. Huang, H. Lee, W. Duan, and J. Ihm, Appl. Phys. Lett. , 2008, 93(6): 063107
49 S. S. Han and A. William, J. Am. Chem. Soc. , 2007, 129(27): 8422
50 K. L. Mulfort and J. T. J. Hupp, J. Am. Chem. Soc. , 2007, 129(31): 9604
51 D. Zhao, D. Yuan, and H. C. Zhou, Energy & Environ. Sci. , 2008, 1: 222
53 X. Li, A. Grubisic, S. T. Stokes, J. Cordes, G. F. Gantef?r, K. H. Bowen, B. Kiran, M. Willis, P. Jena, R. Burgert, and H. Schn?ckel, Science , 2007, 315(5810): 356
54 C. Cento, P. Gislon, M. Bilgili, A. Masci, Q. Zheng, and P. P. Prosini, J. Alloys Comp. , 2007, 437(1-2): 360
55 A. L. L. Dehouche, N. Grimard, J. Goyette, and R. Chahine, Nanotechnology , 2005, 16(4): 402
56 P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araújo, R. H. Scheicher, R. Ahuja, and P. Jena, Nano Lett. , 2009, 9(4): 1501
57 C. H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, D. Natelson, and J. M. Triscone, Rev. Mod. Phys. , 2006, 78(4): 1185
58 L. Qiao, W. T. Zheng, Q. B. Wen, and Q. Jiang, Nanotechnology , 2007, 18(15): 155707
59 M. Tomonari and O. Sugino, Chem. Phys. Lett. , 2007, 437(4-6): 170
60 A. Migani, C. Sousa, F. Sanz, and F. Illas, Phys. Chem. Chem. Phys. , 2005, 7(18): 3353
61 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science , 2006, 313(5789): 951
62 S. Zou and M. Weaver, J. Phys. Chem. , 1996, 100(10): 4237
63 S. Zou and M. Weaver, Anal. Chem. , 1998, 70(11): 2387
64 E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. C. Neto, Phys. Rev. Lett. , 2007, 99(21): 216802
65 R. Q. Zhang, W. T. Zheng, and Q. Jiang, J. Phys. Chem. C , 2009, 113(24): 10384
66 W. Liu, Y. H. Zhao, Y. Li, E. J. Lavernia, and Q. Jiang, Phys. Chem. Chem. Phys. , 2009, 11(40): 9233
67 W. Liu, Y. H. Zhao, J. Nguyen, Y. Li, Q. Jiang, and E. J. Lavernia, Carbon , 2009, 47(15): 3452
68 Z. M. Ao, W. T. Zheng, and Q. Jiang, Nanotechnology , 2008, 19(27): 275710
69 J. Zhou, Q. Wang, Q. Sun, P. Jena, and X. S. Chen, Proc. Natl. Acad. Sci. USA , 2010, 107(7): 2801
70 S. Gemming, T. Kunze, K. Morawetz, V. Pankoke, R. Luschtinetz, and G. Seifert, Eur. Phys. J. Spec. Top. , 2009, 177(1): 83
71 H. Gronbeck, Top. Catal. , 2004, 28(1-4): 59
72 P. Hohenberg and W. Kohn, Phys. Rev. B , 1964, 136: B864
73 G. Kresse and J. Fürthmuller, Comput. Mater. Sci. , 1996, 6(1): 15
74 B. Delley, J. Chem. Phys. , 1990, 92(1): 508
75 M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter , 2002, 14(11): 2717
76 The help of the Materials Studio Modeling
77 B. Delley, J. Chem. Phys. , 2000, 113(18): 7756
78 B. K. Rao and P. Jena, Europhys. Lett. , 1992, 20(4): 307
79 M. Y. Ni, L. F. Huang, L. J. Guo, and Z. Zeng, Int. J. Hydrogen Energy , 2010, 35(8): 3546
80 A. Tokura, F. Maeda, Y. Teraoka, A. Yoshigoe, D. Takagi, Y. Homma, Y. Watanabe, and Y. Kobayashi, Carbon , 2008, 46(14): 1903
81 G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, D. Mann, X. L. Li, and H. J. Dai, J. Am. Chem. Soc. , 2006, 128(18): 6026
82 B. Panella, K. Hones, U. Muller, N. Trukhan, M. Schubert, H. Putter, and M. Hirscher, Angew. Chem. Int. Ed. , 2008, 47(11): 2138
83 A. F. Vilaplana, J. Phys. Chem. C , 2008, 112(10): 3998
84 D. Henwood and J. D. Carey, Phys. Rev. B , 2007, 75(24): 245413
85 J. S. Arellano, L. M. Molina, A. Rubio, and J. A. Alonso, J. Chem. Phys. , 2000, 112(18): 8114
86 G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, Nano Lett. , 2008, 8(10): 3166
87 M. Aertsens and J. Naudts, J. Stat. Phys. , 1991, 62(3-4): 609
88 J. Graetz, S. Chaudhuri, Y. Lee, T. Vogt, J. T. Muckerman, and J. J. Reilly, Phys. Rev. B , 2006, 74(21): 214114
89 J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, and S. Yip, J. Chem. Phys. , 2003, 119(4): 2376
90 F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. , 2007, 6(9): 652
91 C. He, P. Zhang, Y. F. Zhu, and Q. Jiang, J. Phys. Chem. C , 2008, 112(24): 9045
92 Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2005, 94: 155504
93 E. Durgun, Y. R. Jang, and S. Ciraci, Phys. Rev. B , 2007, 76(7): 073413
94 H. Lee, W. I. Choi, and J. Ihm, Phys. Rev. Lett. , 2006, 97(5): 056104
95 G. Kim, S. H. Jhi, N. Park, S. G. Louie, and M. L. Cohen, Phys. Rev. B , 2008, 78(8): 085408
96 G. Kim, S. H. Jhi, and N. Park, Appl. Phys. Lett. , 2008, 92(1): 013106
97 S. A. Shevlin and Z. X. Guo, J. Phys. Chem. C , 2008, 112(44): 17456
98 S. Meng, E. Kaxiras, and Z. Zhang, Nano Lett. , 2007, 7(3): 663
99 G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini, and H. J. Wasserman, J. Am. Chem. Soc. , 1984, 106(2): 451
100 S. Barman, P. Sen, and G. P. Das, J. Phys. Chem. C , 2008, 112(50): 19963
101 G. J. Kubas, Acc. Chem. Res. , 1988, 21(3): 120
102 J. Niu, B. K. Rao, and P. Jena, Phys. Rev. Lett. , 1992, 68(15): 2277
103 M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Y. Zhang, Phys. Rev. Lett. , 2008, 100(20): 206806
104 Q. Sun, Q. Wang, and P. Jena, Appl. Phys. Lett. , 2009, 94(1): 013111
105 A. Bhattacharya, S. Bhattacharya, C. Majumder, and G. P. Das, J. Phys. Chem. C , 2010, 114(22): 10297
106 Y. G. Zhou, X. T. Zu, F. Gao, J. L. Nie, and H. Y. Xiao, J. Appl. Phys. , 2009, 105(1): 14309
107 L. Firlej, B. Kuchta, C. Wexler, and P. Pfeifer, Adsorption , 2009, 15(3): 312
108 H. L. Park and Y. C. Chung, Comput. Mater. Sci. , 2010, 49(4): S297
109 S. Suzuki, M. Kushida, S. Amamiya, S. Okada, and K. Nakao, Chem. Phys. Lett. , 2000, 327(5-6): 291
110 G. L. Lu, K. M. Deng, H. P. Wu, J. L. Yang, and X. Wang, J. Chem. Phys. , 2006, 124(5): 054305
111 X. X. Wang, X. Y. Li, and H. N. Li, Phys. Lett. A , 2008, 372(44): 6677
112 B. Delley, Phys. Rev. B , 2002, 66(15): 155125
113 Y. H. Kim, Y. F. Zhao, A. Williamson, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2006, 96(1): 016102
114 Y. Gao and X. C. Zeng, J. Phys.: Condens. Matter , 2007, 19(38): 386220
115 X. B. Yang, R. Q. Zhang, and J. Ni, Phys. Rev. B , 2009, 79(7): 075431
[1] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[2] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[3] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[4] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[5] Mo-Ran Jia,Zi-Liang Li,Chong Lv,Feng Wan,Bai-Song Xie. Pair production in strong SU(2) background fields[J]. Front. Phys. , 2017, 12(5): 121101-.
[6] Kun Peng Dou (豆坤鵬),Chao-Cheng Kaun (關肇正). Conductance switching of a phthalocyanine molecule on an insulating surface[J]. Front. Phys. , 2017, 12(4): 127303-.
[7] Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Role of confinement in water solidification under electric fields[J]. Front. Phys. , 2015, 10(5): 106101-.
[8] Qiu Tong(邱桐),Huang Ji-Ping(黄吉平). Unprecedentedly rapid transport of single-file rolling water molecules[J]. Front. Phys. , 2015, 10(5): 106102-.
[9] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[10] Wei Li, Chandan Setty, X. H. Chen, Jiangping Hu. Electronic and magnetic structures of chain structured iron selenide compounds[J]. Front. Phys. , 2014, 9(4): 465-471.
[11] Obulkasim Oluk, Bai-Song Xie, Muhmmad Ali Bake, Sayipjamal Dulat. Electron–positron pair production in a strong asymmetric laser electric field[J]. Front. Phys. , 2014, 9(2): 157-163.
[12] Li-fang SONG (宋莉芳), Chun-hong JIANG (姜春红), Shu-sheng LIU (刘淑生), Cheng-li JIAO (焦成丽), Xiao-liang SI (司晓亮), Shuang WANG (王爽), Fen LI (李芬), Jian ZHANG (张箭), Li-xian SUN (孙立贤), Fen XU (徐芬), Feng-lei HUANG (黄风雷). Progress in improving thermodynamics and kinetics of new hydrogen storage materials[J]. Front. Phys. , 2011, 6(2): 151-161.
[13] Qiang FU (付强), Lan-feng YUAN (袁岚峰), Yi LUO (罗毅), Jin-long YANG (杨金龙). Exploring at nanoscale from first principles[J]. Front Phys Chin, 2009, 4(3): 256-268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed