Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (2) : 151-161    https://doi.org/10.1007/s11467-011-0175-2
REVIEW ARTICLE
Progress in improving thermodynamics and kinetics of new hydrogen storage materials
Li-fang SONG (宋莉芳)1,2, Chun-hong JIANG (姜春红)1,2, Shu-sheng LIU (刘淑生)1,2, Cheng-li JIAO (焦成丽)1,2, Xiao-liang SI (司晓亮)1,2, Shuang WANG (王爽)1,2, Fen LI (李芬)1, Jian ZHANG (张箭)1, Li-xian SUN (孙立贤)1(), Fen XU (徐芬)1,3(), Feng-lei HUANG (黄风雷)4
1. Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; 2. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China; 3. Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China; 4. Beijing Institute of Technology, State Key Laboratory of Explosion Science & Technology, Beijing 100081, China
 Download: PDF(339 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrogen storage material has been much developed recently because of its potential for proton exchange membrane (PEM) fuel cell applications. A successful solid-state reversible storage material should meet the requirements of high storage capacity, suitable thermodynamic properties, and fast adsorption and desorption kinetics. Complex hydrides, including boron hydride and alanate, ammonia borane, metal organic frameworks (MOFs), covalent organic frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs), are remarkable hydrogen storage materials because of their advantages of high energy density and safety. This feature article focuses mainly on the thermodynamics and kinetics of these hydrogen storage materials in the past few years.

Keywords ammonia borane      hydrogen storage materials      hydrides      kinetics      metal organic frameworks      thermodynamics     
Corresponding Author(s): Li-xian SUN (孙立贤),Email:lxsun@dicp.ac.cn; Fen XU (徐芬),Email:xufen@lnnu.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Li-fang SONG (宋莉芳),Chun-hong JIANG (姜春红),Shu-sheng LIU (刘淑生), et al. Progress in improving thermodynamics and kinetics of new hydrogen storage materials[J]. Front. Phys. , 2011, 6(2): 151-161.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0175-2
https://academic.hep.com.cn/fop/EN/Y2011/V6/I2/151
1 J. Graetz, Chem. Soc. Rev. , 2009, 38(1): 73
2 S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, Catal. Today , 2007, 120(3-4): 246
3 P. Chen and M. Zhu, Mater. Today , 2008, 11(12): 36
4 L. Schlapbach and A. Züttel, Nature , 2001, 414(6861): 353
5 J. Yang, A. Sudik, C. Wolverton, and D. J. Siegel, Chem. Soc. Rev. , 2010, 39(2): 656
6 B. Bogdanovi? and M. Schwickardi, J. Alloy. Comp. , 1997, 253-254(1-2): 1
7 J. A. Dilts and E. C. Ashby, Inorg. Chem. , 1972, 11(6): 1230
8 S. S. Liu, L. X. Sun, Y. Zhang, F. Xu, J. Zhang, H. L. Chu, M. Q. Fan, T. Zhang, X. Y. Song, and J. P. Grolier, Int. J. Hydrogen Energy , 2009, 34(19): 8079
9 J. R. Ares, K. F. Aguey-Zinsou, M. Porcu, J. M. Sykes, M. Dornheim, T. Klassen, and R. Bormann, Mater. Res. Bull. , 2008, 43(5): 1263
10 R. A. Varin and L. Zbroniec, J. Alloy. Comp. , 2010, 504(1): 89
11 A. Andreasen, T. Vegge, and A. S. Pedersen, J. Solid State Chem. , 2005, 178(12): 3672
12 V. P. Balema, J. W. Wiench, K. W. Dennis, M. Pruski, and V. K. Pecharsky, J. Alloy. Comp. , 2001, 329(1-2): 108
13 J. Chen, N. Kuriyama, Q. Xu, H. T. Takeshita, and T. Sakai, J. Phys. Chem. B , 2001, 105(45): 11214
14 M. Resan, M. D. Hampton, J. K. Lomness, and D. K. Slattery, Int. J. Hydrogen Energy , 2005, 30(13-14): 1417
15 M. Resan, M. D. Hampton, J. K. Lomness, and D. K. Slattery, Int. J. Hydrogen Energy , 2005, 30(13-14): 1413
16 X. P. Zheng, X. H. Qu, I. S. Humail, P. Li, and G. Q. Wang, Int. J. Hydrogen Energy , 2007, 32(9): 1141
17 H. W. Brinks, A. Fossdal, J. E. Fonnel?p, and B. C. Hauback, J. Alloy. Comp. , 2005, 397(1-2): 291
18 V. P. Balema, K. W. Dennis, and V. K. Pecharsky, Chem. Commun. (Camb.) , 2000, (17): 1665
19 D. S. Easton, J. H. Schneibel, and S. A. Speakman, J. Alloy. Comp. , 2005, 398(1-2): 245
20 D. Blanchard, H. W. Brinks, B. C. Hauback, and P. Norby, Mater. Sci. Eng. B , 2004, 108(1-2): 54
21 J. R. Ares, K. F. Aguey-Zinsou, M. Elsaesser, X. Z. Ma, M. Dornheim, T. Klassen, and R. Bormann, Int. J. Hydrogen Energy , 2007, 32(8): 1033
22 Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, N. Muangsin, and S. Kulprathipanja, Int. J. Hydrogen Energy , 2007, 32(9): 1277
23 T. Sun, C. K. Huang, H. Wang, L. X. Sun, and M. Zhu, Int. J. Hydrogen Energy , 2008, 33(21): 6216
24 L. H. Kumar, B. Viswanathan, and S. S. Murthy, Int. J. Hydrogen Energy , 2008, 33: 366
25 L. Zaluski, A. Zaluska, and J. O. Str?m-Olsen, J. Alloy. Comp. , 1999, 290(1-2): 71
26 F. H. Wang, Y. F. Liu, M. X. Gao, K. Luo, H. G. Pan, and Q. D. Wang, J. Phys. Chem. C , 2009, 113(18): 7978
27 A. W. Vittetoe, M. U. Niemann, S. S. Srinivasan, K. Mc-Grath, A. Kumar, D. Y. Goswami, E. K. Stefanakos, and S. Thomas, Int. J. Hydrogen Energy , 2009, 34(5): 2333
28 S. S. Liu, L. X. Sun, J. Zhang, Y. Zhang, F. Xu, Y. H. Xing, F. Li, J. J. Zhao, Y. Du, W. Y. Hu, and H. Q. Deng, Int. J. Hydrogen Energy , 2010, 35(15): 8122
29 S. Sartori, A. Léon, O. Zabara, J. Muller, M. Fichtner, and B. C. Hauback, J. Alloy. Comp. , 2009, 476(1-2): 639
30 J. F. Mao, Z. P. Guo, H. K. Liu, and X. B. Yu, J. Alloy. Comp. , 2009, 487(1-2): 434
31 J. F. Mao, X. B. Yu, Z. P. Guo, C. K. Poh, H. K. Liu, Z. Wu, and J. Ni, J. Phys. Chem. C , 2009, 113(24): 10813
32 J. Wang, A. D. Ebner, and J. A. Ritter, J. Am. Chem. Soc. , 2006, 128(17): 5949
33 J. Graetz, J. Wegrzyn, and J. J. Reilly, J. Am. Chem. Soc. , 2008, 130(52): 17790
34 X. F. Liu, G. S. McGrady, H. W. Langmi, and C. M. Jensen, J. Am. Chem. Soc. , 2009, 131(14): 5032
35 S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata, and A. Züttel, J. Alloy. Comp. , 2005, 404-406: 427
36 Z. Z. Fang, P. Wang, T. E. Rufford, X. D. Kang, G. Q. Lu, and H. M. Cheng, Acta Mater. , 2008, 56(20): 6257
37 N. Brun, R. Janot, C. Sanchez, H. Deleuze, C. Gervais, M. Morcrette, and R. Backov Energy, Environ. Sci. , 2010, 3: 824
38 A. F. Gross, J. J. Vajo, S. L. V. Atta, and G. L. Olson, J. Phys. Chem. C , 2008, 112(14): 5651
39 P. Ngene, P. Adelhelm, A. M. Beale, K. P. de Jong, and P. E. de Jongh, J. Phys. Chem. C , 2010, 114(13): 6163
40 F. W. Dafert and R. Miklauz, Monatsh. Chem. , 1910, 31(9): 981
41 R. Juza and K. Opp, Z. Anorg. Allg. Chem. , 1951, 266(6): 313
42 P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, and K. L. Tan, Nature , 2002, 420(6913): 302
43 T. Ichikawa, N. Hanada, S. Isobe, H. Y. Leng, and H. Fujii, J. Phys. Chem. B , 2004, 108(23): 7887
44 P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, and K. L. Tan, J. Phys. Chem. B , 2003, 107(39): 10967
45 T. Ichikawa, S. Isobe, N. Hanada, and H. Fujii, J. Alloy. Comp. , 2004, 365(1-2): 271
46 S. Isobe, T. Ichikawa, S. Hino, and H. Fujii, J. Phys. Chem. B , 2005, 109(31): 14855
47 T. Hao, M. Matsuo, Y. Nakamori, and S. Orimo, J. Alloy. Comp. , 2008, 458(1-2): L1
48 J. Z. Hu, J. H. Kwak, Z. G. Yang, W. Osborn, T. Markmaitree, and L. L. Shaw, J. Power Sources , 2008, 182(1): 278
49 H. Y. Leng, T. Ichikawa, S. Hino, and H. Fujii, J. Alloy. Comp. , 2008, 463(1-2): 462
50 S. D. Beattie, H. W. Langmi, and G. S. McGrady, Int. J. Hydrogen Energy , 2009, 34(1): 376
51 R. A. Varin, M. Jang, and M. Polanski, J. Alloy. Comp. , 2010, 491(1-2): 658
52 W. Osborn, T. Markmaitree, L. L. Shaw, J. Z. Hu, J. Kwak, and Z. G. Yang, Int. J. Hydrogen Energy , 2009, 34(10): 4331
53 W. Osborn, T. Markmaitree, L. L. Shaw, R. M. Ren, J. Z. Hu, J. H. Kwak, and Z. G. Yang, JOM , 2009, 61(4): 45
54 J. Z. Hu, J. H. Kwak, Z. Yang, W. Osborn, T. Markmaitree, and L. L. Shaw, J. Power Sources , 2008, 181(1): 116
55 W. Osborn, T. Markmaitree, and L. L. Shaw, Nanotechnology , 2009, 20(20): 204082
56 A. Blomqvist, C. M. Araujo, R. H. Scheicher, P. Srepusharawoot, W. Li, P. Chen, and R. Ahuja, Phys. Rev. B , 2010, 82(2): 024304
57 L. P. Ma, H. B. Dai, Z. Z. Fang, X. D. Kang, Y. Liang, P. J. Wang, P. Wang, and H. M. Cheng, J. Phys. Chem. C , 2009, 113(22): 9944
58 L. P. Ma, Z. Z. Fang, H. B. Dai, X. D. Kang, Y. Liang, P. J. Wang, P. Wang, and H. M. Cheng, J. Mater. Res. , 2009, 24(6): 1936
59 H. Liu, Y. H. Zhang, and S. P. Huang, Chin. J. Chem. Phys. , 2010, 23(1): 5
60 J. Lu, Y. J. Choi, Z. Z. Fang, and H. Y. Sohn, J. Power Sources , 2010, 195(7): 1992
61 T. Markmaitree and L. L. Shaw, J. Power Sources , 2010, 195(7): 1984
62 R. R. Shahi, T. P. Yadav, M. A. Shaz, and O. N. Srivastva, Int. J. Hydrogen Energy , 2010, 35(1): 238
63 M. Tsubota, S. Hino, H. Fujii, C. Oomatsu, M. Yamana, T. Ichikawa, and Y. Kojima, Int. J. Hydrogen Energy , 2010, 35(5): 2058
64 F. Dolci, E. Weidner, M. Hoelzel, T. Hansen, P. Moretto, C. Pistidda, M. Brunelli, M. Fichtner, and W. Lohstroh, Int. J. Hydrogen Energy , 2010, 35(11): 5448
65 Q. Wang, Y. G. Chen, C. L. Wu, M. D. Tao, and J. G. Gai, Chin. Sci. Bull. , 2009, 54(3): 497
66 Q. Wang, Y. G. Chen, G. Niu, C. L. Wu, and M. D. Tao, Ind. Eng. Chem. Res. , 2009, 48(11): 5250
67 J. C. Wang, H. L. Li, S. M. Wang, X. P. Liu, Y. Li, and L. J. Jiang, Int. J. Hydrogen Energy , 2009, 34(3): 1411
68 L. P. Ma, P. Wang, H. B. Dai, and H. M. Cheng, J. Alloy. Comp. , 2009, 468(1-2): L21
69 A. Sudik, J. Yang, D. Halliday, and C. Wolverton, J. Phys. Chem. C , 2008, 112(11): 4384
70 W. S. Tang, G. Wu, T. Liu, A. T. S. Wee, C. K. Yong, Z. T. Xiong, A. T. S. Hor, and P. Chen, Dalton Trans. , 2008, 18(18): 2395
71 Y. X. Liu, S. Q. Yang, D. D. Zhang, G. X. Li, W. L. Wei, and J. Guo, Journal of Inorganic Materials , 2009, 24(4): 813
72 J. R. Hattrick-Simpers, J. E. Maslar, M. U. Niemann, C. Chiu, S. S. Srinivasan, E. K. Stefanakos, and L. A. Bendersky, Int. J. Hydrogen Energy , 2010, 35(12): 6323
73 L. L. Li, B. Peng, Z. L. Tao, F. Y. Cheng, and J. Chen, Adv. Funct. Mater. , 2010, 20(12): 1894
74 D. M. Liu, Q. Q. Liu, T. Z. Si, and Q. A. Zhang, J. Alloy. Comp. , 2010, 495(1): 272
75 A. Siangsai, Y. Suttisawat, P. Sridechprasat, P. Rangsunvigit, B. Kitiyanan, and S. Kulprathipanja, J. Chem. Eng. of Jpn , 2010, 43(1): 95
76 J. K. Yang, X. H. Wang, J. Mao, L. X. Chen, H. G. Pan, S. Q. Li, H. W. Ge, and C. P. Chen, J. Alloy. Comp. , 2010, 494(1-2): 58
77 A. Sudik, J. Yang, D. J. Siegel, C. Wolverton, R. O. Carter, and A. R. Drews, J. Phys. Chem. C , 2009, 113(5): 2004
78 M. U. Niemann, S. S. Srinivasan, A. Kumar, E. K. Stefanakos, D. Y. Goswami, and K. McGrath, Int. J. Hydrogen Energy , 2009, 34(19): 8086
79 K. Luo, Y. F. Liu, F. H. Wang, M. X. Gao, and H. G. Pan, Int. J. Hydrogen Energy , 2009, 34(19): 8101
80 M. U. D. Naik, S. U. Rather, C. S. So, S. W. Hwang, A. R. Kim, and K. S. Nahm, Int. J. Hydrogen Energy , 2009, 34(21): 8937
81 X. L. Zheng, W. L. Xu, Z. T. Xiong, Y. S. Chua, G. T. Wu, S. Qin, H. Chen, and P. Chen, J. Mater. Chem. , 2009, 19(44): 8426
82 Q. A. Wang, Z. Q. Chen, W. B. Yu, Y. G. Chen, and Y. A. Li, Ind. Eng. Chem. Res. , 2010, 49(13): 5993
83 G. Wolf, J. Baumann, F. Baitalow, and F. P. Hoffmann, Thermochim. Acta , 2000, 343(1-2): 19
84 M. G. Hu, R. A. Geanangel, and W. W. Wendlandt, Thermochim. Acta , 1978, 23(2): 249
85 M. C. Denney, V. Pons, T. J. Hebden, D. M. Heinekey, and K. I. Goldberg, J. Am. Chem. Soc. , 2006, 128(37): 12048
86 T. He, Z. T. Xiong, G. T. Wu, H. L. Chu, C. Z. Wu, T. Zhang, and P. Chen, Chem. Mater. , 2009, 21(11): 2315
87 C. A. Jaska, K. Temple, A. J. Lough, and I. Manners, J. Am. Chem. Soc. , 2003, 125(31): 9424
88 M. Chandra and Q. Xu, J. Power Sources , 2006, 156(2): 190
89 Q. Xu and M. Chandra, J. Power Sources , 2006, 163(1): 364
90 T. J. Clark, G. R. Whittell, and I. Manners, Inorg. Chem. , 2007, 46(18): 7522
91 P. V. Ramachandran and P. D. Gagare, Inorg. Chem. , 2007, 46(19): 7810
92 S. B. Kalidindi, M. Indirani, and B. R. Jagirdar, Inorg. Chem. , 2008, 47(16): 7424
93 F. Y. Cheng, H. Ma, Y. M. Li, and J. Chen, Inorg. Chem. , 2007, 46(3): 788
94 J. M. Yan, X. B. Zhang, S. Han, H. Shioyama, and Q. Xu, Angew. Chem. Int. Ed. , 2008, 47(12): 2287
95 F. H. Stephens, R. T. Baker, M. H. Matus, D. J. Grant, and D. A. Dixon, Angew. Chem. Int. Ed. , 2007, 46(5): 746
96 M. E. Bluhm, M. G. Bradley, U. Butterick, Kusari, and L. G. Sneddon, J. Am. Chem. Soc. , 2006, 128(24): 7748
97 H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger, B. L. Scott, M. E. Bowden, B. L. Davis, and A. K. Burrell, Angew. Chem. Int. Ed. , 2007, 46(47): 8995
98 A. Gutowska, L. Y. Li, Y. S. Shin, C. M. M. Wang, X. H. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski, and T. Autrey, Angew. Chem. Int. Ed. , 2005, 44(23): 3578
99 Z. Y. Li, G. S. Zhu, G. Q. Lu, S. L. Qiu, and X. D. Yao, J. Am. Chem. Soc. , 2010, 132(5): 1490
100 Z. T. Xiong, C. K. Yong, G. T. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards, and W. I. F. David, Nat. Mater. , 2008, 7(2): 138
101 H. V. K. Diyabalanage, T. Nakagawa, R. P. Shrestha, T. A. Semelsberger, B. L. Davis, B. L. Scott, A. K. Burrell, W. I. F. David, K. R. Ryan, M. O. Jones, and P. P. Edwards, J. Am. Chem. Soc. , 2010, 34(34): 11836
102 M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. , 2001, 34: 319.
103 S. Sircar, R. Mohr, C. Ristic, and M. B. Rao, J. Phys. Chem. B , 1999, 103: 6539
104 Y. Yan, I. Telepeni, S. H. Yang, X. Lin, W. Kockelmann, A. Dailly, A. J. Blake, W. Lewis, G. S. Walker, D. R. Allan, S. A. Barnett, N. R. Champness, and M. Schr?der, J. Am. Chem. Soc. , 2010, 132(12): 4092
105 M. Dinc?aA. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, and J. R. Long, J. Am. Chem. Soc. , 2006, 128(51): 16876
106 M. Dinca, A. F. Yu, and J. R. Long, J. Am. Chem. Soc. , 2006, 128(27): 8904
107 H. Frost, T. Düren, and R. Q. Snurr, J. Phys. Chem. B , 2006, 110(19): 9565
108 K. Sillar, A. Hofmann, and J. Sauer, J. Am. Chem. Soc. , 2009, 131(11): 4143
109 H. Furukawa, M. A. Miller, and O. M. Yaghi, J. Mater. Chem. , 2007, 17(30): 3197
110 S. Y. Qi, K. J. Hay, M. J. Rood, and M. P. Cal, J. Environ. Eng. , 2000, 126(3): 267
111 B. Assfour and G. Seifert, Int. J. Hydrogen Energy , 2009, 34(19): 8135
112 J. H. Luo, H. W. Xu, Y. Liu, Y. S. Zhao, L. L. Daemen, C. Brown, T. V. Timofeeva, S. Q. Ma, and H. C. Zhou, J. Am. Chem. Soc. , 2008, 130(30): 9626
113 J. L. Rowsell, J. Eckert, and O. M. Yaghi, J. Am. Chem. Soc. , 2005, 127(42): 14904
114 A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, J. Am. Chem. Soc. , 2006, 128(11): 3494
115 W. Zhou and T. Yildirim, J. Phys. Chem. C , 2008, 112(22): 8132
116 N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, and O. M. Yaghi, Science , 2003, 300(5622): 1127
117 J. L. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, J. Am. Chem. Soc. , 2004, 126(18): 5666
118 B. Chen, N. Ockwig, A. Millward, D. Contreras, and O. Yaghi, Angew. Chem. Int. Ed. , 2005, 117(30): 4823
119 Q. Yang and C. Zhong, J. Phys. Chem. B , 2006, 110(2): 655
120 N. S. Venkataramanan, R. Sahara, H. Mizuseki, and Y. Kawazoe, Int. J. Mol. Sci. , 2009, 10(4): 1601
121 K. L. Mulfort, T. M. Wilson, M. R. Wasielewski, and J. T. Hupp, Langmuir , 2009, 25(1): 503
122 S. Yang, X. Lin, A. J. Blake, G. S. Walker, P. Hubberstey, N. R. Champness, and M. Schroder, Nat. Chem. , 2009, 1(6): 487
123 A. P. C?té, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, and O. M. Yaghi, Science , 2005, 310(5751): 1166
124 H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P. C?té, R. E. Taylor, M. O’Keeffe, and O. M. Yaghi, Science , 2007, 316(5822): 268
125 A. P. C?té, H. M. El-Kaderi, H. Furukawa, J. R. Hunt, and O. M. Yaghi, J. Am. Chem. Soc. , 2007, 129(43): 12914
126 J. R. Hunt, C. J. Doonan, J. D. LeVangie, A. P. C?té, and O. M. Yaghi, J. Am. Chem. Soc. , 2008, 130(36): 11872
127 G. Garberoglio, Langmuir , 2007, 23(24): 12155
128 S. S. Han, H. Furukawa, O. M. Yaghi, and Goddard, J. Am. Chem. Soc. , 2008, 130(35): 11580
129 E. Tylianakis, E. Klontzas, and G. E. Froudakis, Nanotechnology , 2009, 20(20): 204030
130 E. Klontzas, E. Tylianakis, and G. E. Froudakis, J. Phys. Chem. C , 2008, 112(24): 9095
131 H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc. , 2009, 131(25): 8875
132 Y. J. Choi, J. W. Lee, J. H. Choi, and J. K. Kang, Appl. Phys. Lett. , 2008, 92(17): 173102
133 E. Klontzas, E. Tylianakis, and G. E. Froudakis, J. Phys. Chem. C , 2009, 113(50): 21253
134 F. Li, J. J. Zhao, B. Johansson, and L. X. Sun, Int. J. Hydrogen Energy , 2010, 35(1): 266
135 X. L. Zou, G. Zhou, W. H. Duan, K. Choi, and J. Ihm, J. Phys. Chem. C , 2010, 114(31): 13402
136 E. Klontzas, E. Tylianakis, and G. E. Froudakis, Nano Lett. , 2010, 10(2): 452
137 E. L. Spitler and W. R. Dichtel, Nat. Chem. , 2010, 2(8): 672
138 K. S. Park, Z. Ni, A. P. C?té, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, and O. M. Yaghi, Proc. Natl. Acad. Sci. USA. , 2006, 103(27): 10186
139 H. Hayashi, A. P. C?té, H. Furukawa, M. O’Keeffe, and O. M. Yaghi, Nat. Mater. , 2007, 6(7): 501
140 A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, Acc. Chem. Res. , 2010, 43(1): 58
141 H. Wu, W. Zhou, and T. Yildirim, J. Am. Chem. Soc. , 2007, 129(17): 5314
[1] Zhan-Chun Tu. Abstract models for heat engines[J]. Front. Phys. , 2021, 16(3): 33202-.
[2] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[3] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[4] Hui-Juan Xu, Tong Tong, Rui-Zheng Hou, Hong-Rong Li. Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes[J]. Front. Phys. , 2018, 13(5): 138206-.
[5] Da Li (李达), Yan Liu (刘妍), Fu-Bo Tian (田夫波), Shu-Li Wei (魏书丽), Zhao Liu (刘召), De-Fang Duan (段德芳), Bing-Bing Liu (刘冰冰), Tian Cui (崔田). Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation[J]. Front. Phys. , 2018, 13(5): 137107-.
[6] Zhao Deng (赵登),R. E. Waltz,Xiaogang Wang (王晓钢). Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas[J]. Front. Phys. , 2016, 11(5): 115203-.
[7] Ting-Hua Li (李廷华),Dong-Lai Zhu(朱东来),Fu-Chun Mao(毛福春),Ming Huang(黄铭),Jing-Jing Yang(杨晶晶),Shou-Bo Li. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Front. Phys. , 2016, 11(5): 110503-.
[8] Zhi-wei ZHANG (张志伟), Jian-chen LI (李建忱), Qing JIANG (蒋青). Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review[J]. Front. Phys. , 2011, 6(2): 162-176.
[9] Han DING (丁翰), Wen-biao LIU (刘文彪). Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method[J]. Front. Phys. , 2011, 6(1): 106-108.
[10] Ji-li HUANG(黄基利), Wen-biao LIU(刘文彪), . Fluctuation around horizon on a Schwarzschild black hole using the null geodesic method[J]. Front. Phys. , 2009, 4(4): 530-533.
[11] Bo LIU (刘博), Wen-biao LIU(刘文彪). The thermodynamics in a dynamical black hole[J]. Front Phys Chin, 2009, 4(1): 94-96.
[12] LANG Xing-you, JIANG Qing. Size dependence of phase transition temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals[J]. Front. Phys. , 2007, 2(3): 289-311.
[13] WU Zhi-min, WU Zhi-min, WANG Xin-qiang, WANG Xin-qiang, XIAO Xu-yang, XIAO Xu-yang, HE Huan-dian, HE Huan-dian, LUO Qiang, LUO Qiang. Thermodynamic properties of noble metal clusters: molecular dynamics simulation[J]. Front. Phys. , 2006, 1(3): 351-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed