|
|
Electrochemical hydrogen storage properties of melt-spun Ti0.9Zr0.1V0.2Ni1.5La0.5 alloy |
Jian WANG1,2, Guang-bo CHE1, Qing-wei WANG1, Wan-xi ZHANG1, Li-min WANG1,2( ) |
1. Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Ministry of Education), Jilin Normal University, Siping 136000, China; 2. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China |
|
|
Abstract The Ti0.9Zr0.1V0.2Ni1.5La0.5 alloy samples were synthesized by melt-spinning technique at the different wheel velocity (cooling rate), and the structure and electrochemical hydrogen storage properties were investigated. The result indicated that the structure of the melt-spun ribbons mainly contains C14 Laves phase and V-based solid solution phase. The discharge capacity, cyclic stability, high-rate discharge ability and electrochemical kinetic of the alloy electrodes are correlated with the cooling rate (wheel velocity), and the maximum discharge capacity is over 200 mA·h/g at the wheel velocity of 20 m/s.
|
Keywords
Ti0.9Zr0.1V0.2Ni1.5La0.5 alloy
melt-spinning
hydrogen storage
electrochemical properties
|
Corresponding Author(s):
WANG Li-min,Email:lmwang@ciac.jl.cn
|
Issue Date: 05 June 2011
|
|
1 |
H. W. Yang, W. S. Lee, Y. Y. Wang, C. C. Wan, T. W. Cheng, and K. H. Lang, J. Mater. Res. , 1995, 10(7): 1680 doi: 10.1557/JMR.1995.1680
|
2 |
D. Y. Song, X. Q. Gao, Y. S. Zhang, J. Yan, and P. W. Shen, J. Alloy. Comp. , 1994, 206(1): 43
|
3 |
Z. B. Liu, Q. Li, Z. Zhang, G. F. Mi, Q. L. Yuan, and L. M. Wang, Int. J. Hydrogen Energy , 2009, 34(4): 1890 doi: 10.1016/j.ijhydene.2008.12.010
|
4 |
D. Y. Yah, G. Sandrock, and S. Suda, J. Alloy. Comp. , 1995, 223(1): 32
|
5 |
S. M. Lee, S. H. Kim, and J. Y. Lee, J. Alloy. Comp. , 2002, 330-332: 796
|
6 |
H. H. Lee, K. Y. Lee, and J. Y. Lee, J. Alloy. Comp. , 1997, 253-254(1-2): 601
|
7 |
S. J. Choi, J. Choi, C. Y. Seo, and C. N. Park, J. Alloy. Comp. , 2003, 356-357: 725
|
8 |
B. Z. Liu, Y. M. Wu, and L. M. Wang, J. Power Sources , 2006, 159(2): 1458 doi: 10.1016/j.jpowsour.2005.11.077
|
9 |
W. Hu, J. L. Wang, L. D. Wang, Y. M. Wu, and L. Wang, Electrochim. Acta , 2009, 54(10): 2770 doi: 10.1016/j.electacta.2008.11.043
|
10 |
H. Iba and E. Akiba, J. Alloy. Comp. , 1997, 253-254(1-2): 21
|
11 |
M. Tsukahara, K. Takahashi, T. Mishima, A. Isomura, and T. Sakai, J. Alloy. Comp. , 1997, 253-254(1-2): 583
|
12 |
M. Tsukahara, K. Takahashi, T. Mishima, A. Isomura, and T. Sakai, J. Alloy. Comp. , 1996, 236(1-2): 151
|
13 |
Y. H. Xua, C. P. Chen, X. L. Wang, Y. Q. Lei, X. H. Wang, L. X. Chen, and Q. D. Wang, Int. J. Hydrogen Energy , 2007, 32(12): 1716 doi: 10.1016/j.ijhydene.2006.08.022
|
14 |
J. J. Reilly and R. H. Wiswall, Inorg. Chem. , 1979, 9(7): 1678 doi: 10.1021/ic50089a013
|
15 |
Q. A. Zhang, Y. Q. Lei, X. G. Yang, Y. L. Du, and Q. D. Wang, Int. J. Hydrogen Energy , 2000, 25(10): 977 doi: 10.1016/S0360-3199(00)00019-7
|
16 |
H. Miao, M. X. Gao, Y. F. Liu, Y. Lin, J. H. Wang, and H. G. Pan, Int. J. Hydrogen Energy , 2007, 32(16): 3947 doi: 10.1016/j.ijhydene.2007.05.006
|
17 |
Y. H. Zhang, B.W. Li, H. P. Ren, S. H. Guo, Z. W. Wu, and X. L. Wang, Mater. Chem. Phys. , 2009, 115(1): 328 doi: 10.1016/j.matchemphys.2008.12.024
|
18 |
T. Z. Huang, Z. Wu, S. L. Feng, B. J. Xia, and N. X. Xu, Mater. Sci. Eng. A , 2005, 390(1-2): 362 doi: 10.1016/j.msea.2004.08.023
|
19 |
K. Zhong, Y. F. Liu, M. X. Gao, J. H. Wang, H. Miao, and H. G. Pan, Int. J. Hydrogen Energy , 2008, 33(2): 149 doi: 10.1016/j.ijhydene.2007.09.006
|
20 |
N. Kuriyama, T. Sakai, H. Miyamura, I. Ueharaand, and H. Ishikawa, J. Alloy. Comp. , 1993, 202(1-2): 183
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|