|
|
Mechanical properties of bcc Fe–Cr alloys by first-principles simulations |
Xiao-qing Li (李晓庆)1,2, Ji-jun Zhao (赵纪军)1,2( ), Jing-cheng Xu (徐京城)1,2 |
1. Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China; 2. College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract The effect of chromium content on the fundamental mechanical properties of Fe–Cr alloys has been studied by first-principles calculations. Within a random solid solution model, the lattice constants and the elastic constants of ferromagnetic bcc Fe1-xCrx (0≤x≤0.156) alloys were calculated for different compositions. With addition of Cr content, the lattice parameters of Fe–Cr alloys are larger than that of pure Fe solid, and the corresponding Young’s modulus and shear modulus rise nonmonotonically with the increasing Cr content. All alloys (except 9.4 at% Cr) exhibit less ductile behavior compared with pure bcc Fe. For the Fe1-xCrx (0≤x≤0.156) alloys, the average magnetic moment per atom decreases linearly with the increasing Cr concentration.
|
Keywords
Fe–Cr alloys
mechanical properties
lattice constant
magnetic moment
|
Corresponding Author(s):
null,Email:zhaojj@dlut.edu.cn
|
Issue Date: 01 June 2012
|
|
1 |
R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf, and M. Victoria, J. Nucl. Mater. , 2002, 307-311: 455 doi: 10.1016/S0022-3115(02)01082-6
|
2 |
A. Kohyama, A. Hishinuma, D. S. Gelles, R. L. Klueh, W. Dietz, and K. Ehrlich, J. Nucl. Mater. , 1996, 233-237: 138 doi: 10.1016/S0022-3115(96)00327-3
|
3 |
T. Muroga, M. Gasparotto, and S. J. Zinkle, Fusion Eng. Des. , 2002, 61-62: 13 doi: 10.1016/S0920-3796(02)00219-3
|
4 |
A. A. F. Tavassoli, J. Nucl. Mater. , 2002, 302(2-3): 73 doi: 10.1016/S0022-3115(02)00794-8
|
5 |
B. van der Schaaf, D. S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, A. Moslang, and G. R. Odette, J. Nucl. Mater. , 2000, 283-287: 52 doi: 10.1016/S0022-3115(00)00220-8
|
6 |
F. A. Garner, D. S. Gelles, and F. W. Wiffen, eds., TMSAIME , 1985
|
7 |
A. F. Rowcliffe, J. P. Robertson, R. L. Klueh, K. Shiba, D. J. Alexander, M. L. Grossbeck, and S. Jitsukawa, J. Nucl. Mater. , 1998, 258(263): 1275 doi: 10.1016/S0022-3115(98)00163-9
|
8 |
A. Kohyama, Y. Kohno, K. Satoh, and N. Igata, J. Nucl. Mater. , 1984, 122(1-3): 619 doi: 10.1016/0022-3115(84)90669-X
|
9 |
S. Jitsukawa, M. Tamura, B. van der Schaaf, R. L. Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. R. Odette, A. A. Tavassoli, K. Shiba, A. Kohyama, and A. Kimura, J. Nucl. Mater. , 2002, 307-311: 179 doi: 10.1016/S0022-3115(02)01075-9
|
10 |
T. Hasegawa, Y. Tomita, and A. Kohyama, J. Nucl. Mater. , 1998, 258(263): 1153 doi: 10.1016/S0022-3115(98)00138-X
|
11 |
R. L. Klueh, D. J. Alexander, and M. Rieth, J. Nucl. Mater. , 1999, 273(2): 146 doi: 10.1016/S0022-3115(99)00035-5
|
12 |
Q. Y. Huang, J. G. Li, and Y. X. Chen, J. Nucl. Mater. , 2004, 329-333: 268 doi: 10.1016/j.jnucmat.2004.04.056
|
13 |
V. Krsjak,W. Egger, M. Petriska, and S. Sojak, Probl. Atom. Sci. Tech. , 2009, 109.
|
14 |
R. L. Klueh, D. J. Alexander, and E. A. Kenik, J. Nucl. Mater. , 1995, 227(1-2): 11 doi: 10.1016/0022-3115(95)00143-3
|
15 |
Z. Lu, R. G. Faulkner, G. Was, and B. D. Wirth, Scripta Materialia , 2008, 58(10): 878 doi: 10.1016/j.scriptamat.2008.01.004
|
16 |
M. I. Luppo, C. Bailat, R. Schaublin, and M. Victoria, J. Nucl. Mater. , 2000, 283-287: 483 doi: 10.1016/S0022-3115(00)00370-6
|
17 |
R. H. Jones, H. L. Heinisch, and K. A. McCarthy, J. Nucl. Mater. , 1999, 271-272: 518 doi: 10.1016/S0022-3115(98)00864-2
|
18 |
D. S. Gelles, J. Nucl. Mater. , 1995, 225: 163 doi: 10.1016/0022-3115(95)00053-4
|
19 |
S. I. Porollo, A. M. Dvoriashin, A. N. Vorobyev, and Y. V. Konobeev, J. Nucl. Mater. , 1998, 256(2-3): 247 doi: 10.1016/S0022-3115(98)00043-9
|
20 |
G. R. Speich, A. J. Schwoeble, and W.C. Leslie, Metall. Trans. , 1972, 3(8): 2031 doi: 10.1007/BF02643211
|
21 |
G. Kresse and D. Joubert, Phys. Rev. B , 1999, 59(3): 1758 doi: 10.1103/PhysRevB.59.1758
|
22 |
P. E. Bl?chl, Phys. Rev. B , 1994, 50(24): 17953 doi: 10.1103/PhysRevB.50.17953
|
23 |
G. Kresse and J. Furthmuller, Phys. Rev. B , 1996, 54(16): 11169 doi: 10.1103/PhysRevB.54.11169
|
24 |
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B , 1992, 46(11): 6671 doi: 10.1103/PhysRevB.46.6671
|
25 |
D. C. Wallace, Solid State Physics, New York: Academic, 1970
|
26 |
J. J. Zhao, J. M. Winey, and Y. M. Gupta, Phys. Rev. B , 2007, 75(9): 094105 doi: 10.1103/PhysRevB.75.094105
|
27 |
L. Vo?dlo, G. A. de Wijs, G. Kresse, M. Gillan, and G. D. Price, Faraday Discuss. , 1997, 106: 205 doi: 10.1039/a701628j
|
28 |
X. W. Sha and R. E. Cohen, Phys. Rev. B , 2006, 74(21): 214111 doi: 10.1103/PhysRevB.74.214111
|
29 |
J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. , 1961, 122(6): 1714 doi: 10.1103/PhysRev.122.1714
|
30 |
L. Vitos, Computational Quantum Mechanics for Materials Engineers, London: Springer-Verlag, 2007
|
31 |
M. Ropo, K. Kokko, and L. Vitos, Phys. Rev. B , 2008, 77(19): 195445 doi: 10.1103/PhysRevB.77.195445
|
32 |
W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Belfast: Pergamon, 1958
|
33 |
H. L. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B , 2009, 79(22): 224201 doi: 10.1103/PhysRevB.79.224201
|
34 |
P. A. Korzhavyi, A. V. Ruban, J. Odqvist, J. O. Nilsson, and B. Johansson, Phys. Rev. B , 2009, 79(5): 054202 doi: 10.1103/PhysRevB.79.054202
|
35 |
S. F. Pugh, Philos. Mag. , 1954, 45: 823
|
36 |
D. G. Pettifor, Mater. Sci. Technol. , 1992, 8: 345 doi: 10.1179/026708392790170801
|
37 |
C. Kittel, Introduction to Solid State Physics, New York: Wiley, 1996
|
38 |
A. T. Aldred, Phys. Rev. B , 1976, 14(1): 219 doi: 10.1103/PhysRevB.14.219
|
39 |
C. Paduani and J. C. Krause, Braz. J. Phys. , 2006, 36(4a): 1262 doi: 10.1590/S0103-97332006000700025
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|