Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (3) : 360-365    https://doi.org/10.1007/s11467-011-0193-0
RESEARCH ARTICLE
Mechanical properties of bcc Fe–Cr alloys by first-principles simulations
Xiao-qing Li (李晓庆)1,2, Ji-jun Zhao (赵纪军)1,2(), Jing-cheng Xu (徐京城)1,2
1. Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China; 2. College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China
 Download: PDF(393 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effect of chromium content on the fundamental mechanical properties of Fe–Cr alloys has been studied by first-principles calculations. Within a random solid solution model, the lattice constants and the elastic constants of ferromagnetic bcc Fe1-xCrx (0≤x≤0.156) alloys were calculated for different compositions. With addition of Cr content, the lattice parameters of Fe–Cr alloys are larger than that of pure Fe solid, and the corresponding Young’s modulus and shear modulus rise nonmonotonically with the increasing Cr content. All alloys (except 9.4 at% Cr) exhibit less ductile behavior compared with pure bcc Fe. For the Fe1-xCrx (0≤x≤0.156) alloys, the average magnetic moment per atom decreases linearly with the increasing Cr concentration.

Keywords Fe–Cr alloys      mechanical properties      lattice constant      magnetic moment     
Corresponding Author(s): null,Email:zhaojj@dlut.edu.cn   
Issue Date: 01 June 2012
 Cite this article:   
Xiao-qing Li (李晓庆),Ji-jun Zhao (赵纪军),Jing-cheng Xu (徐京城). Mechanical properties of bcc Fe–Cr alloys by first-principles simulations[J]. Front. Phys. , 2012, 7(3): 360-365.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0193-0
https://academic.hep.com.cn/fop/EN/Y2012/V7/I3/360
1 R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf, and M. Victoria, J. Nucl. Mater. , 2002, 307-311: 455
doi: 10.1016/S0022-3115(02)01082-6
2 A. Kohyama, A. Hishinuma, D. S. Gelles, R. L. Klueh, W. Dietz, and K. Ehrlich, J. Nucl. Mater. , 1996, 233-237: 138
doi: 10.1016/S0022-3115(96)00327-3
3 T. Muroga, M. Gasparotto, and S. J. Zinkle, Fusion Eng. Des. , 2002, 61-62: 13
doi: 10.1016/S0920-3796(02)00219-3
4 A. A. F. Tavassoli, J. Nucl. Mater. , 2002, 302(2-3): 73
doi: 10.1016/S0022-3115(02)00794-8
5 B. van der Schaaf, D. S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, A. Moslang, and G. R. Odette, J. Nucl. Mater. , 2000, 283-287: 52
doi: 10.1016/S0022-3115(00)00220-8
6 F. A. Garner, D. S. Gelles, and F. W. Wiffen, eds., TMSAIME , 1985
7 A. F. Rowcliffe, J. P. Robertson, R. L. Klueh, K. Shiba, D. J. Alexander, M. L. Grossbeck, and S. Jitsukawa, J. Nucl. Mater. , 1998, 258(263): 1275
doi: 10.1016/S0022-3115(98)00163-9
8 A. Kohyama, Y. Kohno, K. Satoh, and N. Igata, J. Nucl. Mater. , 1984, 122(1-3): 619
doi: 10.1016/0022-3115(84)90669-X
9 S. Jitsukawa, M. Tamura, B. van der Schaaf, R. L. Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. R. Odette, A. A. Tavassoli, K. Shiba, A. Kohyama, and A. Kimura, J. Nucl. Mater. , 2002, 307-311: 179
doi: 10.1016/S0022-3115(02)01075-9
10 T. Hasegawa, Y. Tomita, and A. Kohyama, J. Nucl. Mater. , 1998, 258(263): 1153
doi: 10.1016/S0022-3115(98)00138-X
11 R. L. Klueh, D. J. Alexander, and M. Rieth, J. Nucl. Mater. , 1999, 273(2): 146
doi: 10.1016/S0022-3115(99)00035-5
12 Q. Y. Huang, J. G. Li, and Y. X. Chen, J. Nucl. Mater. , 2004, 329-333: 268
doi: 10.1016/j.jnucmat.2004.04.056
13 V. Krsjak,W. Egger, M. Petriska, and S. Sojak, Probl. Atom. Sci. Tech. , 2009, 109.
14 R. L. Klueh, D. J. Alexander, and E. A. Kenik, J. Nucl. Mater. , 1995, 227(1-2): 11
doi: 10.1016/0022-3115(95)00143-3
15 Z. Lu, R. G. Faulkner, G. Was, and B. D. Wirth, Scripta Materialia , 2008, 58(10): 878
doi: 10.1016/j.scriptamat.2008.01.004
16 M. I. Luppo, C. Bailat, R. Schaublin, and M. Victoria, J. Nucl. Mater. , 2000, 283-287: 483
doi: 10.1016/S0022-3115(00)00370-6
17 R. H. Jones, H. L. Heinisch, and K. A. McCarthy, J. Nucl. Mater. , 1999, 271-272: 518
doi: 10.1016/S0022-3115(98)00864-2
18 D. S. Gelles, J. Nucl. Mater. , 1995, 225: 163
doi: 10.1016/0022-3115(95)00053-4
19 S. I. Porollo, A. M. Dvoriashin, A. N. Vorobyev, and Y. V. Konobeev, J. Nucl. Mater. , 1998, 256(2-3): 247
doi: 10.1016/S0022-3115(98)00043-9
20 G. R. Speich, A. J. Schwoeble, and W.C. Leslie, Metall. Trans. , 1972, 3(8): 2031
doi: 10.1007/BF02643211
21 G. Kresse and D. Joubert, Phys. Rev. B , 1999, 59(3): 1758
doi: 10.1103/PhysRevB.59.1758
22 P. E. Bl?chl, Phys. Rev. B , 1994, 50(24): 17953
doi: 10.1103/PhysRevB.50.17953
23 G. Kresse and J. Furthmuller, Phys. Rev. B , 1996, 54(16): 11169
doi: 10.1103/PhysRevB.54.11169
24 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B , 1992, 46(11): 6671
doi: 10.1103/PhysRevB.46.6671
25 D. C. Wallace, Solid State Physics, New York: Academic, 1970
26 J. J. Zhao, J. M. Winey, and Y. M. Gupta, Phys. Rev. B , 2007, 75(9): 094105
doi: 10.1103/PhysRevB.75.094105
27 L. Vo?dlo, G. A. de Wijs, G. Kresse, M. Gillan, and G. D. Price, Faraday Discuss. , 1997, 106: 205
doi: 10.1039/a701628j
28 X. W. Sha and R. E. Cohen, Phys. Rev. B , 2006, 74(21): 214111
doi: 10.1103/PhysRevB.74.214111
29 J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. , 1961, 122(6): 1714
doi: 10.1103/PhysRev.122.1714
30 L. Vitos, Computational Quantum Mechanics for Materials Engineers, London: Springer-Verlag, 2007
31 M. Ropo, K. Kokko, and L. Vitos, Phys. Rev. B , 2008, 77(19): 195445
doi: 10.1103/PhysRevB.77.195445
32 W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Belfast: Pergamon, 1958
33 H. L. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B , 2009, 79(22): 224201
doi: 10.1103/PhysRevB.79.224201
34 P. A. Korzhavyi, A. V. Ruban, J. Odqvist, J. O. Nilsson, and B. Johansson, Phys. Rev. B , 2009, 79(5): 054202
doi: 10.1103/PhysRevB.79.054202
35 S. F. Pugh, Philos. Mag. , 1954, 45: 823
36 D. G. Pettifor, Mater. Sci. Technol. , 1992, 8: 345
doi: 10.1179/026708392790170801
37 C. Kittel, Introduction to Solid State Physics, New York: Wiley, 1996
38 A. T. Aldred, Phys. Rev. B , 1976, 14(1): 219
doi: 10.1103/PhysRevB.14.219
39 C. Paduani and J. C. Krause, Braz. J. Phys. , 2006, 36(4a): 1262
doi: 10.1590/S0103-97332006000700025
[1] Yue Xin, Qiao Shi, Ke Xu, Zhi-Sen Zhang, Jian-Yang Wu. Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability[J]. Front. Phys. , 2021, 16(3): 33504-.
[2] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[3] Run-Sen Zhang, Jin-Wu Jiang. The art of designing carbon allotropes[J]. Front. Phys. , 2019, 14(1): 13401-.
[4] Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory[J]. Front. Phys. , 2018, 13(6): 132109-.
[5] Takaharu Otsuka. How have they started? – A brief guide for pedestrians[J]. Front. Phys. , 2018, 13(6): 132102-.
[6] Jian-Bing Gu, Chen-Ju Wang, Lin Zhang, Yan Cheng, Xiang-Dong Yang. First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb[J]. Front. Phys. , 2015, 10(4): 107101-.
[7] Jin-Wu Jiang. Graphene versus MoS2: A short review[J]. Front. Phys. , 2015, 10(3): 106801-.
[8] SPAVIERI Gianfranco, ERAZO Jesús, SANCHEZ Arturo, AGUIRRE Felix, GILLIES George T., RODRIGUEZ Miguel. Electromagnetic momentum in frontiers of modern physics[J]. Front. Phys. , 2008, 3(3): 239-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed