|
|
Entropy majorization, thermal adiabatic theorem, and quantum phase transitions |
Shi-jian Gu( ) |
Department of Physics and Institute of Theoretical Physics, The Chinese University of Hong Kong, Hong Kong, China |
|
|
Abstract Let a general quantum many-body system at a low temperature adiabatically cross through the vicinity of the system’s quantum critical point. We show that the system’s temperature is significantly suppressed due to both the entropy majorization theorem in quantum information science and the entropy conservation law in reversible adiabatic processes. We take the one-dimensional transverse-field Ising model and the spinless fermion system as concrete examples to show that the inverse temperature might become divergent around the systems’ critical points. Since the temperature is a measurable quantity in experiments, it can be used, via reversible adiabatic processes at low temperatures, to detect quantum phase transitions in the perspectives of quantum information science and quantum statistical mechanics.
|
Keywords
quantum phase transition
entropy majorization
|
Corresponding Author(s):
Gu Shi-jian,Email:sjgu@phy.cuhk.edu.hk
|
Issue Date: 01 April 2012
|
|
1 |
S. Sachdev, Quantum Phase Transitions , Cambridge: Cambridge University Press, 2000
|
2 |
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information , Cambridge: Cambridge University Press, 2000
|
3 |
L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. , 2008, 80(2): 517 doi: 10.1103/RevModPhys.80.517
|
4 |
A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature , 2002, 416(6881): 608 doi: 10.1038/416608a
|
5 |
T. J. Osborne and M. A. NielsenNielsen, Phys. Rev. A , 2002, 66(3): 032110 doi: 10.1103/PhysRevA.66.032110
|
6 |
P. Zanardi and N. Paunkovi?, Phys. Rev. E , 2006, 74(3): 031123 doi: 10.1103/PhysRevE.74.031123
|
7 |
H. Q. Zhou and J. P. Barjaktarevic, J. Phys. A , 2008, 41(41): 412001 doi: 10.1088/1751-8113/41/41/412001
|
8 |
W. L. You, Y. W. Li, and S. J. Gu, Phys. Rev. E , 2007, 76(2): 022101 doi: 10.1103/PhysRevE.76.022101
|
9 |
S. J. Gu, Int. J. Mod. Phys. B , 2010, 24: 4371 doi: 10.1142/S0217979210056335
|
10 |
X. Peng, J. Du, and D. Suter, Phys. Rev. A , 2005, 71(1): 012307 doi: 10.1103/PhysRevA.71.012307
|
11 |
J. Zhang, X. Peng, N. Rajendran, and D. Suter, Phys. Rev. Lett. , 2008, 100(10): 100501 doi: 10.1103/PhysRevLett.100.100501
|
12 |
J. Zhang, F. M. Cucchietti, C. M. Chandrashekar, M. Laforest, C. A. Ryan, and M. Ditty, Phys. Rev. A , 2009, 79: 012305 doi: 10.1103/PhysRevA.79.012305
|
13 |
A. Hubbard, J. K. Gamble, and R. Laamme, Phys. Rev. A , 2009, 79(1): 012305 doi: 10.1103/PhysRevA.79.012305
|
14 |
M. A. Nielsen, Phys. Rev. Lett. , 1999, 83(2): 436 doi: 10.1103/PhysRevLett.83.436
|
15 |
E. Lieb, D. Mattis, and T. Schultz, Ann. Phys. , 1961, 16: 407 doi: 10.1016/0003-4916(61)90115-4
|
16 |
Katsura, Phys. Rev. , 1962, 127: 1508 doi: 10.1103/PhysRev.127.1508
|
17 |
L. Zhu, M. Garst, A. Rosch, and Q. Si, Phys. Rev. Lett. , 2003, 91: 066404 doi: 10.1103/PhysRevLett.91.066404
|
18 |
M. Garst and A. Rosch, Phys. Rev. B , 2005, 72: 205129 doi: 10.1103/PhysRevB.72.205129
|
19 |
For a review, P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys. , 2008, 4(3): 186
|
20 |
L. Van Hove, Phys. Rev. , 1953, 89(6): 1189 doi: 10.1103/PhysRev.89.1189
|
21 |
For examples, J. I. Latorre, C. A. Lutken, E. Rico, and G. Vidal, Phys. Rev. A , 2005, 71: 034301
|
22 |
R. Orüs, Phys. Rev. A , 2005, 71: 052327 doi: 10.1103/PhysRevA.71.052327
|
23 |
B. C. Arnold, Majorization and the Lorenz Order: A Brief Introduction, Springer-Verlag Lecture Notes in Statistics , 1987, 43
|
24 |
L. D. Landau and E. M. Lifshitz, Quantum Mechanics , London: Pergamon, 1958
|
25 |
C. Zener, Proc. R. Soc. A , 1932, 137(833): 696 doi: 10.1098/rspa.1932.0165
|
26 |
N. D. Mermin and H.Wagner, Phys. Rev. Lett. , 1966, 17(22): 1133 doi: 10.1103/PhysRevLett.17.1133
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|