Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (2) : 244-251    https://doi.org/10.1007/s11467-011-0198-8
RESEARCH ARTICLE
Entropy majorization, thermal adiabatic theorem, and quantum phase transitions
Shi-jian Gu()
Department of Physics and Institute of Theoretical Physics, The Chinese University of Hong Kong, Hong Kong, China
 Download: PDF(265 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Let a general quantum many-body system at a low temperature adiabatically cross through the vicinity of the system’s quantum critical point. We show that the system’s temperature is significantly suppressed due to both the entropy majorization theorem in quantum information science and the entropy conservation law in reversible adiabatic processes. We take the one-dimensional transverse-field Ising model and the spinless fermion system as concrete examples to show that the inverse temperature might become divergent around the systems’ critical points. Since the temperature is a measurable quantity in experiments, it can be used, via reversible adiabatic processes at low temperatures, to detect quantum phase transitions in the perspectives of quantum information science and quantum statistical mechanics.

Keywords quantum phase transition      entropy majorization     
Corresponding Author(s): Gu Shi-jian,Email:sjgu@phy.cuhk.edu.hk   
Issue Date: 01 April 2012
 Cite this article:   
Shi-jian Gu. Entropy majorization, thermal adiabatic theorem, and quantum phase transitions[J]. Front. Phys. , 2012, 7(2): 244-251.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0198-8
https://academic.hep.com.cn/fop/EN/Y2012/V7/I2/244
1 S. Sachdev, Quantum Phase Transitions , Cambridge: Cambridge University Press, 2000
2 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information , Cambridge: Cambridge University Press, 2000
3 L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. , 2008, 80(2): 517
doi: 10.1103/RevModPhys.80.517
4 A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature , 2002, 416(6881): 608
doi: 10.1038/416608a
5 T. J. Osborne and M. A. NielsenNielsen, Phys. Rev. A , 2002, 66(3): 032110
doi: 10.1103/PhysRevA.66.032110
6 P. Zanardi and N. Paunkovi?, Phys. Rev. E , 2006, 74(3): 031123
doi: 10.1103/PhysRevE.74.031123
7 H. Q. Zhou and J. P. Barjaktarevic, J. Phys. A , 2008, 41(41): 412001
doi: 10.1088/1751-8113/41/41/412001
8 W. L. You, Y. W. Li, and S. J. Gu, Phys. Rev. E , 2007, 76(2): 022101
doi: 10.1103/PhysRevE.76.022101
9 S. J. Gu, Int. J. Mod. Phys. B , 2010, 24: 4371
doi: 10.1142/S0217979210056335
10 X. Peng, J. Du, and D. Suter, Phys. Rev. A , 2005, 71(1): 012307
doi: 10.1103/PhysRevA.71.012307
11 J. Zhang, X. Peng, N. Rajendran, and D. Suter, Phys. Rev. Lett. , 2008, 100(10): 100501
doi: 10.1103/PhysRevLett.100.100501
12 J. Zhang, F. M. Cucchietti, C. M. Chandrashekar, M. Laforest, C. A. Ryan, and M. Ditty, Phys. Rev. A , 2009, 79: 012305
doi: 10.1103/PhysRevA.79.012305
13 A. Hubbard, J. K. Gamble, and R. Laamme, Phys. Rev. A , 2009, 79(1): 012305
doi: 10.1103/PhysRevA.79.012305
14 M. A. Nielsen, Phys. Rev. Lett. , 1999, 83(2): 436
doi: 10.1103/PhysRevLett.83.436
15 E. Lieb, D. Mattis, and T. Schultz, Ann. Phys. , 1961, 16: 407
doi: 10.1016/0003-4916(61)90115-4
16 Katsura, Phys. Rev. , 1962, 127: 1508
doi: 10.1103/PhysRev.127.1508
17 L. Zhu, M. Garst, A. Rosch, and Q. Si, Phys. Rev. Lett. , 2003, 91: 066404
doi: 10.1103/PhysRevLett.91.066404
18 M. Garst and A. Rosch, Phys. Rev. B , 2005, 72: 205129
doi: 10.1103/PhysRevB.72.205129
19 For a review, P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys. , 2008, 4(3): 186
20 L. Van Hove, Phys. Rev. , 1953, 89(6): 1189
doi: 10.1103/PhysRev.89.1189
21 For examples, J. I. Latorre, C. A. Lutken, E. Rico, and G. Vidal, Phys. Rev. A , 2005, 71: 034301
22 R. Orüs, Phys. Rev. A , 2005, 71: 052327
doi: 10.1103/PhysRevA.71.052327
23 B. C. Arnold, Majorization and the Lorenz Order: A Brief Introduction, Springer-Verlag Lecture Notes in Statistics , 1987, 43
24 L. D. Landau and E. M. Lifshitz, Quantum Mechanics , London: Pergamon, 1958
25 C. Zener, Proc. R. Soc. A , 1932, 137(833): 696
doi: 10.1098/rspa.1932.0165
26 N. D. Mermin and H.Wagner, Phys. Rev. Lett. , 1966, 17(22): 1133
doi: 10.1103/PhysRevLett.17.1133
[1] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[2] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[3] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[4] Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder[J]. Front. Phys. , 2018, 13(4): 137306-.
[5] Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method[J]. Front. Phys. , 2018, 13(4): 136401-.
[6] Hai-Tao Cui (崔海涛),Xue-Xi Yi (衣学喜). Detecting ground-state degeneracy in many-body systems through qubit decoherence[J]. Front. Phys. , 2017, 12(1): 120304-.
[7] V. R. Shaginyan,A. Z. Msezane,G. S. Japaridze,K. G. Popov,V. A. Khodel. Strongly correlated Fermi systems as a new state of matter[J]. Front. Phys. , 2016, 11(5): 117103-.
[8] V. R. Shaginyan,A. Z. Msezane,G. S. Japaridze,K. G. Popov,J. W. Clark,V. A. Khodel. Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2[J]. Front. Phys. , 2016, 11(2): 117102-.
[9] Bao An(保安),Chen Yao-Hua(陈耀华),Lin Heng-Fu(林恒福),Liu Hai-Di(刘海迪),Zhang Xiao-Zhong(章晓中). Quantum phase transitions in two-dimensional strongly correlated fermion systems[J]. Front. Phys. , 2015, 10(5): 106401-.
[10] Yao-hua Chen, Wei Wu, Guo-cai Liu, Hong-shuai Tao, Wu-ming Liu. Quantum phase transition of cold atoms trapped in optical lattices[J]. Front. Phys. , 2012, 7(2): 223-234.
[11] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed