Electronic and optical properties of semiconductor and graphene quantum dots
Wei-dong Sheng1,2(), Marek Korkusinski1, Alev Devrim Gü?lü1, Michal Zielinski1,3, Pawel Potasz1,4, Eugene S. Kadantsev1, Oleksandr Voznyy1, Pawel Hawrylak1()
1. Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Canada; 2. Department of Physics, Fudan University, Shanghai 200433, China; 3. Institute of Physics, Nicolaus Copernicus University, Torun, Poland; 4. Institute of Physics, Wroclaw University of Technology, Wroclaw, Poland
Our recent work on the electronic and optical properties of semiconductor and graphene quantum dots is reviewed. For strained self-assembled InAs quantum dots on GaAs or InP substrate atomic positions and strain distribution are described using valence-force field approach and continuous elasticity theory. The strain is coupled with the effective mass, k · p, effective bond-orbital and atomistic tight-binding models for the description of the conduction and valence band states. The single-particle states are used as input to the calculation of optical properties, with electronelectron interactions included via configuration interaction (CI) method. This methodology is used to describe multiexciton complexes in quantum dot lasers, and in particular the hidden symmetry as the underlying principle of multiexciton energy levels, manipulating emission from biexcitons for entangled photon pairs, and optical control and detection of electron spins using gates. The self-assembled quantum dots are compared with graphene quantum dots, one carbon atom-thick nanostructures. It is shown that the control of size, shape and character of the edge of graphene dots allows to manipulate simultaneously the electronic, optical, and magnetic properties in a single material system.
L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots, Berlin: Springer, 1998
2
D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, Chichester: Wiley, 1999
3
P. Hawrylak, and M. Korkusinski, Electronic Properties of Self-Assembled Quantum Dots, in: Single Quantum Dots — Fundamentals, Applications, and New Concepts, edited by P. Michler, Topics in Applied Physics , Berlin: Springer, 2003
4
M. Korkusinski and P. Hawrylak, Coded qubit based on electron spin, in: Semiconductor Quantum Bits, edited by O. Benson and F. Henneberger , Singapore:Pan Stanford Pub-lishing, 2008 doi: 10.1142/9789814241199_0001
5
P. Hawrylak, Magnetic ion-carrier interactions in quantum dots, pp 191-220, in: Introduction to the Physics of Diluted Magnetic Semiconductors, edited by Jacek Kossut and Jan Gaj, Springer Series in Materials Science 144, 2011
6
B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys. , 2007, 3(3): 192 doi: 10.1038/nphys544
P. Hawrylak, C. Gould, A. Sachrajda, Y. Feng, and Z. Wasilewski, Phys. Rev. B , 1999, 59(4): 2801 doi: 10.1103/PhysRevB.59.2801
9
M. Ciorga, A. S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Phys. Rev. B , 2000, 61(24): R16315 doi: 10.1103/PhysRevB.61.R16315
10
M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, Science , 2001, 291(5503): 451 doi: 10.1126/science.291.5503.451
11
J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. arucha, and L. P. Kouwenhoven, Phys. Rev. B , 2003, 67(16): 161308 doi: 10.1103/PhysRevB.67.161308
12
J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. , 2004, 93(18): 186802 doi: 10.1103/PhysRevLett.93.186802
13
M. Pioro-Ladri`ere, M. Ciorga, J. Lapointe, P. Zawadzki, M. Korkusinski, P. Hawrylak, and A. S. Sachrajda, Phys. Rev.Lett. , 2003, 91(2): 026803 doi: 10.1103/PhysRevLett.91.026803
14
P. Hawrylak and M. Korkusiński, Solid State Commun. , 2005, 136(9-10): 508
15
L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett. , 2006, 97(3): 036807 doi: 10.1103/PhysRevLett.97.036807
16
M. Korkusinski, I. P. Gimenez, P. Hawrylak, L. Gaudreau, S. A. Studenikin, and A. S. Sachrajda, Phys. Rev. B , 2007, 75(11): 115301 doi: 10.1103/PhysRevB.75.115301
17
G. Granger, L. Gaudreau, A. Kam, M. Pioro-Ladrière, S. A. Studenikin, Z. R. Wasilewski, P. Zawadzki, and A. S. Sachrajda, Phys. Rev. B , 2010, 82(7): 075304 doi: 10.1103/PhysRevB.82.075304
18
L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, Appl. Phys. Lett. , 1985, 47(10): 1099 doi: 10.1063/1.96342
19
P. M. Petroff, Epitaxial Growth and Electronic Structure of Quantum Dots, in: Single Quantum Dots — Fundamentals, Applications, and New Concepts, edited by P. Michler, Topics in Applied Physics , Berlin: Springer, 2003
20
Y. Arakawa and H. Sakaki, Appl. Phys. Lett. , 1982, 40(11): 939 doi: 10.1063/1.92959
S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. Feng, and S. Charbonneau, Science , 1996, 274(5291): 1350 doi: 10.1126/science.274.5291.1350
23
M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul’nikov, A. V. Lunev, A. V. Sakharov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop’ev, L. V. Asryan, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogov, and P. Werner, J. Appl. Phys. , 1998, 83(10): 5561 doi: 10.1063/1.367390
24
S. Fafard, Z. R. Wasilewski, C. Ni Allen, K. Hinzer, J. P. McCaffrey, and Y. Feng, Appl. Phys. Lett. , 1999, 75(7): 986 doi: 10.1063/1.124253
25
G. Ortner, C. Ni Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, Appl. Phys. Lett. , 2006, 88(12): 121119 doi: 10.1063/1.2187431
26
C. E. Valdivia, E. Desfonds, D. Masson, S. Fafard, A. Carlson, J. Cook, T. J. Hall, and K. Hinzer, Proc. SPIE , 2008, 7099: 709915 doi: 10.1117/12.807675
P. Hawrylak, G. A. Narvaez, M. Bayer, and A. Forchel, Phys. Rev. Lett. , 2000, 85(2): 389 doi: 10.1103/PhysRevLett.85.389
34
J. Lefebvre, P. J. Poole, J. Fraser, G. C. Aers, D. Chithrani, and R. L. Williams, J. Cryst. Growth , 2002, 234(2-3): 391
35
M. E. Reimer, M. Korkusinski, D. Dalacu, J. Lefebvre, J. Lapointe, P. J. Poole, G. C. Aers, W. R. McKinnon, P. Hawrylak, and R. L. Williams, Phys. Rev. B , 2008, 78(19): 195301 doi: 10.1103/PhysRevB.78.195301
36
D. Dalacu, K. Mnaymneh, V. Sazonova, P. J. Poole, G. C. Aers, J. Lapointe, and R. CheritonA. J. Spring Thorpe, and R.Williams, Phys. Rev. B , 2010,82(3): 033301 doi: 10.1103/PhysRevB.82.033301
37
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science , 2004, 306(5696): 666 doi: 10.1126/science.1102896
38
T. Ihn, S. Gustavsson, U. Gasser, B. Küng, T. Müller, R. Schleser, M. Sigrist, I. Shorubalko, R. Leturcq, and K. Ensslin, Solid State Commun. , 2009, 149(35-36): 1419
39
A. D. Gü?lüP. Potasz, O. Voznyy, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett. , 2009, 103(24): 246805
40
O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B , 1999, 59(8): 5688 doi: 10.1103/PhysRevB.59.5688
41
C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, J. Appl. Phys. , 1998, 83(5): 2548 doi: 10.1063/1.366631
L. R. C. Fonseca, J. L. Jimenez, and J. P. Leburton, Phys. Rev. B , 1998, 58(15): 9955 doi: 10.1103/PhysRevB.58.9955
46
A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, Phys. Rev. B , 1996, 54(8): 5604 doi: 10.1103/PhysRevB.54.5604
47
Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, J. Cryst. Growth , 1999, 201-202: 1131
48
S. Raymond, S. Studenikin, A. Sachrajda, Z. Wasilewski, S. J. Cheng, W. Sheng, P. Hawrylak, A. Babinski, M. Potemski, G. Ortner, and M. Bayer, Phys. Rev. Lett. , 2004, 92(18): 187402 doi: 10.1103/PhysRevLett.92.187402
49
S. L. Chuang, Physics of Optoelectronic Devices, New York: Wiley, 1995
J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Philadelphia: SIAM, 2002 doi: 10.1137/1.9780898719192
52
W. Sheng and J.-P. Leburton, Phys. Stat. Sol. (b) , 2003, 237: 394 doi: 10.1002/pssb.200301778
W. Sheng and J.-P. Leburton, Appl. Phys. Lett. , 2002, 81(23): 4449 doi: 10.1063/1.1526167
55
J. I. Climente, M. Korkusinski, G. Goldoni, and P. Hawrylak, Phys. Rev. B , 2008, 78(11): 115323 doi: 10.1103/PhysRevB.78.115323
56
C. Y. Hsieh, R. Cheriton, M. Korkusinski, and P. Hawrylak, Phys. Rev. B , 2009, 80(23): 235320 doi: 10.1103/PhysRevB.80.235320
57
M. F. Doty, J. I. Climente, M. Korkusinski, M. Scheibner, A. S. Bracker, P. Hawrylak, and D. Gammon, Phys. Rev. Lett. , 2009, 102(4): 047401 doi: 10.1103/PhysRevLett.102.047401
M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Sch?fer, Phys. Rev. B , 2002, 65(19): 195315 doi: 10.1103/PhysRevB.65.195315
82
O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. , 2000, 84(11): 2513 doi: 10.1103/PhysRevLett.84.2513
83
N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, Phys. Rev. Lett. , 2006, 96(13): 130501 doi: 10.1103/PhysRevLett.96.130501
84
W. Sheng, S. J. Cheng, and P. Hawrylak, Phys. Rev. B , 2005, 71(3): 035316 doi: 10.1103/PhysRevB.71.035316
85
T. Kazimierczuk, M. Goryca, M. Koperski, A. Golnik, J. A. Gaj, M. Nawrocki, P. Wojnar, and P. Kossacki, Phys. Rev. B , 2010, 81(15): 155313 doi: 10.1103/PhysRevB.81.155313
K. Kowalik, O. Krebs, A. Golnik, J. Suffczynski, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, Phys. Rev. B , 2007, 75(19): 195340 doi: 10.1103/PhysRevB.75.195340
94
S. J. Cheng, W. Sheng, and P. Hawrylak, Phys. Rev. B , 2003, 68(23): 235330 doi: 10.1103/PhysRevB.68.235330
95
A. Babinski, M. Potemski, S. Raymond, J. Lapointe, and Z. R. Wasilewski, Phys. Rev. B , 2006, 74(15): 155301 doi: 10.1103/PhysRevB.74.155301
96
M. Bayer, A. Kuther, A. Forchel, A. Gorbunov, V. B. Timofeev, F. Sch?fer, J. P. Reithmaier, T. L. Reinecke, and S. N. Walck,Phys. Rev. Lett. , 1999, 82(8): 1748 doi: 10.1103/PhysRevLett.82.1748
97
G. Medeiros-Ribeiroa, M. V. B. Pinheiro, V. L. Pimentel, and E. Marega, Appl. Phys. Lett. , 2002, 80(22): 4229 doi: 10.1063/1.1483112
98
T. P. M. Alegre, F. G. G. Hernández, A. L. C. Pereira, and G. Medeiros-Ribeiro, Phys. Rev. Lett. , 2006, 97(23): 236402 doi: 10.1103/PhysRevLett.97.236402
P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, Phys. Rev. Lett. , 2000, 84(4): 733 doi: 10.1103/PhysRevLett.84.733
106
K. Kowalik, O. Krebs, A. Lema?tre, S. Laurent, P. Senellart, P. Voisin, and J. A. Gaj, Appl. Phys. Lett. , 2005, 86(4): 041907 doi: 10.1063/1.1855409
107
M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, Appl. Phys. Lett. , 2007, 91(5): 051904 doi: 10.1063/1.2761522
108
T. Nakaoka, S. Tarucha, and Y. Arakawa, Phys. Rev. B , 2007, 76(4): 041301R doi: 10.1103/PhysRevB.76.041301
109
M. F. Doty, M. Scheibner, I. V. Ponomarev, E. A. Stinaff, A. S. Bracker, V. L. Korenev, T. L. Reinecke, and D. Gammon, Phys. Rev. Lett. , 2006, 97(19): 197202 doi: 10.1103/PhysRevLett.97.197202
110
W. Sheng, Appl. Phys. Lett. , 2010, 96(13): 133102 doi: 10.1063/1.3367707
111
W. Sheng, Appl. Phys. Lett. , 2009, 95(11): 113105 doi: 10.1063/1.3227653
K. Chang, J. B. Xia, and F. M. Peeters, Appl. Phys. Lett. , 2003, 82(16): 2661 doi: 10.1063/1.1568825
114
M. Korkusinski, M. E. Reimer, R. L. Williams, and P. Hawrylak, Phys. Rev. B , 2009, 79(3): 035309 doi: 10.1103/PhysRevB.79.035309
115
R. L. Williams, G. C. Aers, J. Lefebvre, P. J. Poole, and D. Chithrani, Physica E , 2002, 13(2-4): 1200 doi: 10.1016/S1386-9477(02)00335-1
116
M. E. Reimer, D. Dalacu, J. Lapointe, P. J. Poole, D. Kim, G. C. Aers, W. R. McKinnon, and R. L. Williams, Appl. Phys. Lett. , 2009, 94(1): 011108 doi: 10.1063/1.3063048
J. Blinowski, N. H. Hau, C. Rigaux, J. P. Vieren, R. Le Toullec, G. Furdin, A. Hérold, and J. Melin, J. Physique , 1980, 41(1): 47 doi: 10.1051/jphys:0198000410104700
120
D. M. Hoffman, P. C. Eklund, R. E. Heinz, P. Hawrylak, and K. R. Subbaswamy, Phys. Rev. B , 1985, 31(6): 3973 doi: 10.1103/PhysRevB.31.3973
A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. , 2009, 81(1): 109 doi: 10.1103/RevModPhys.81.109
123
L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, Nano Lett. , 2009, 9(7): 2600 doi: 10.1021/nl900811r
124
J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, Nano Lett. , 2005, 5(2): 287 doi: 10.1021/nl048111+
125
L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science , 2008, 320(5874): 356 doi: 10.1126/science.1154663
126
B. Wunsch, T. Stauber, and F. Guinea, Phys. Rev. B , 2008, 77(3): 035316 doi: 10.1103/PhysRevB.77.035316
127
J. Wurm, A. Rycerz, I. Adagideli, M. Wimmer, K. Richter, and H. U. Baranger, Phys. Rev. Lett. , 2009, 102(5): 056806 doi: 10.1103/PhysRevLett.102.056806
128
F. Libisch, C. Stampfer, and J. Burgdorfer, Phys. Rev. B , 2009, 79(11): 115423 doi: 10.1103/PhysRevB.79.115423
129
J. Lu, P. S. Yeo, C. K. Gan, P. Wu, and K. P. Loh, Nat. Nanotechnol. , 2011, 6(4): 247 doi: 10.1038/nnano.2011.30
130
J. Akola, H. P. Heiskanen, and M. Manninen, Phys. Rev. B , 2008, 77(19): 193410 doi: 10.1103/PhysRevB.77.193410
T. Yamamoto, T. Noguchi, and K. Watanabe, Phys. Rev. B , 2006, 74: 121409(R) doi: 10.1103/PhysRevB.74.121409
139
Z. Z. Zhang, K. Chang, and F. M. Peeters, Phys. Rev. B , 2008, 77(23): 235411 doi: 10.1103/PhysRevB.77.235411
140
X. Yan, X. Cui, B. S. Li, and L. S. Li, Nano Lett. , 2010, 10(5): 1869 doi: 10.1021/nl101060h
141
M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Phys. Rev. Lett. , 2006, 97(26): 266405 doi: 10.1103/PhysRevLett.97.266405
142
M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Phys. Rev. Lett. , 2008, 101(26): 267601 doi: 10.1103/PhysRevLett.101.267601
143
C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, and A. Jacobsen, Front. Phys. , 2011, 6(3): 271
144
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B , 1996, 54(24): 17954 doi: 10.1103/PhysRevB.54.17954
145
K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B , 1999, 59(12): 8271 doi: 10.1103/PhysRevB.59.8271
146
B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Phys. Rev. Lett. , 2008, 101(3): 036803 doi: 10.1103/PhysRevLett.101.036803
T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science , 2006, 313(5789): 951 doi: 10.1126/science.1130681
149
E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, Phys. Rev. Lett. , 2007, 99(21): 216802 doi: 10.1103/PhysRevLett.99.216802
150
J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater. , 2008, 7(2): 151 doi: 10.1038/nmat2082
151
K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys. Rev. Lett. , 2009, 102(25): 256405 doi: 10.1103/PhysRevLett.102.256405
152
Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature , 2009, 459(7248): 820 doi: 10.1038/nature08105
153
R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, Science , 2010, 330(6005): 812 doi: 10.1126/science.1194988
154
E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, J. Phys.: Condens. Matter , 2010, 22(17): 175503 doi: 10.1088/0953-8984/22/17/175503
155
L. M. Zhang, Z. Li, D. N. Basov, M. M. Fogler, Z. Hao, and M. C. Martin, Phys. Rev. B , 2008, 78(23): 235408 doi: 10.1103/PhysRevB.78.235408
156
T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, Phys. Rev. Lett. , 2008, 101(9): 096402 doi: 10.1103/PhysRevLett.101.096402
157
O. Voznyy, A. D. Gü?lüP. Potasz, and P. Hawrylak, Phys. Rev. B , 2011, 83(16): 165417 doi: 10.1103/PhysRevB.83.165417
158
K. A. Ritter and J. W. Lyding, Nat. Mater. , 2009, 8(3): 235 doi: 10.1038/nmat2378
159
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature , 2003, 421(6926): 925 doi: 10.1038/nature01371