Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (3) : 328-352    https://doi.org/10.1007/s11467-011-0200-5
REVIEW ARTICLE
Electronic and optical properties of semiconductor and graphene quantum dots
Wei-dong Sheng1,2(), Marek Korkusinski1, Alev Devrim Gü?lü1, Michal Zielinski1,3, Pawel Potasz1,4, Eugene S. Kadantsev1, Oleksandr Voznyy1, Pawel Hawrylak1()
1. Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Canada; 2. Department of Physics, Fudan University, Shanghai 200433, China; 3. Institute of Physics, Nicolaus Copernicus University, Torun, Poland; 4. Institute of Physics, Wroclaw University of Technology, Wroclaw, Poland
 Download: PDF(1083 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Our recent work on the electronic and optical properties of semiconductor and graphene quantum dots is reviewed. For strained self-assembled InAs quantum dots on GaAs or InP substrate atomic positions and strain distribution are described using valence-force field approach and continuous elasticity theory. The strain is coupled with the effective mass, k · p, effective bond-orbital and atomistic tight-binding models for the description of the conduction and valence band states. The single-particle states are used as input to the calculation of optical properties, with electronelectron interactions included via configuration interaction (CI) method. This methodology is used to describe multiexciton complexes in quantum dot lasers, and in particular the hidden symmetry as the underlying principle of multiexciton energy levels, manipulating emission from biexcitons for entangled photon pairs, and optical control and detection of electron spins using gates. The self-assembled quantum dots are compared with graphene quantum dots, one carbon atom-thick nanostructures. It is shown that the control of size, shape and character of the edge of graphene dots allows to manipulate simultaneously the electronic, optical, and magnetic properties in a single material system.

Keywords quantum dots      electronic structure      multiexciton      graphene      magnetism     
Corresponding Author(s): Sheng Wei-dong,Email:shengw@fudan.edu.cn; Hawrylak Pawel,Email:Pawel.Hawrylak@nrc-cnrc.gc.ca   
Issue Date: 01 June 2012
 Cite this article:   
Wei-dong Sheng,Marek Korkusinski,Alev Devrim Gü?lü, et al. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0200-5
https://academic.hep.com.cn/fop/EN/Y2012/V7/I3/328
1 L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots, Berlin: Springer, 1998
2 D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, Chichester: Wiley, 1999
3 P. Hawrylak, and M. Korkusinski, Electronic Properties of Self-Assembled Quantum Dots, in: Single Quantum Dots — Fundamentals, Applications, and New Concepts, edited by P. Michler, Topics in Applied Physics , Berlin: Springer, 2003
4 M. Korkusinski and P. Hawrylak, Coded qubit based on electron spin, in: Semiconductor Quantum Bits, edited by O. Benson and F. Henneberger , Singapore:Pan Stanford Pub-lishing, 2008
doi: 10.1142/9789814241199_0001
5 P. Hawrylak, Magnetic ion-carrier interactions in quantum dots, pp 191-220, in: Introduction to the Physics of Diluted Magnetic Semiconductors, edited by Jacek Kossut and Jan Gaj, Springer Series in Materials Science 144, 2011
6 B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys. , 2007, 3(3): 192
doi: 10.1038/nphys544
7 P. Hawrylak, Phys. Rev. Lett. , 1993, 71(20): 3347
doi: 10.1103/PhysRevLett.71.3347
8 P. Hawrylak, C. Gould, A. Sachrajda, Y. Feng, and Z. Wasilewski, Phys. Rev. B , 1999, 59(4): 2801
doi: 10.1103/PhysRevB.59.2801
9 M. Ciorga, A. S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Phys. Rev. B , 2000, 61(24): R16315
doi: 10.1103/PhysRevB.61.R16315
10 M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, Science , 2001, 291(5503): 451
doi: 10.1126/science.291.5503.451
11 J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. arucha, and L. P. Kouwenhoven, Phys. Rev. B , 2003, 67(16): 161308
doi: 10.1103/PhysRevB.67.161308
12 J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. , 2004, 93(18): 186802
doi: 10.1103/PhysRevLett.93.186802
13 M. Pioro-Ladri`ere, M. Ciorga, J. Lapointe, P. Zawadzki, M. Korkusinski, P. Hawrylak, and A. S. Sachrajda, Phys. Rev.Lett. , 2003, 91(2): 026803
doi: 10.1103/PhysRevLett.91.026803
14 P. Hawrylak and M. Korkusiński, Solid State Commun. , 2005, 136(9-10): 508
15 L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett. , 2006, 97(3): 036807
doi: 10.1103/PhysRevLett.97.036807
16 M. Korkusinski, I. P. Gimenez, P. Hawrylak, L. Gaudreau, S. A. Studenikin, and A. S. Sachrajda, Phys. Rev. B , 2007, 75(11): 115301
doi: 10.1103/PhysRevB.75.115301
17 G. Granger, L. Gaudreau, A. Kam, M. Pioro-Ladrière, S. A. Studenikin, Z. R. Wasilewski, P. Zawadzki, and A. S. Sachrajda, Phys. Rev. B , 2010, 82(7): 075304
doi: 10.1103/PhysRevB.82.075304
18 L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, Appl. Phys. Lett. , 1985, 47(10): 1099
doi: 10.1063/1.96342
19 P. M. Petroff, Epitaxial Growth and Electronic Structure of Quantum Dots, in: Single Quantum Dots — Fundamentals, Applications, and New Concepts, edited by P. Michler, Topics in Applied Physics , Berlin: Springer, 2003
20 Y. Arakawa and H. Sakaki, Appl. Phys. Lett. , 1982, 40(11): 939
doi: 10.1063/1.92959
21 N. N. Ledentsov, Semicond. Sci. Technol. , 2011, 26(1): 014001
doi: 10.1088/0268-1242/26/1/014001
22 S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. Feng, and S. Charbonneau, Science , 1996, 274(5291): 1350
doi: 10.1126/science.274.5291.1350
23 M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul’nikov, A. V. Lunev, A. V. Sakharov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop’ev, L. V. Asryan, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogov, and P. Werner, J. Appl. Phys. , 1998, 83(10): 5561
doi: 10.1063/1.367390
24 S. Fafard, Z. R. Wasilewski, C. Ni Allen, K. Hinzer, J. P. McCaffrey, and Y. Feng, Appl. Phys. Lett. , 1999, 75(7): 986
doi: 10.1063/1.124253
25 G. Ortner, C. Ni Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, Appl. Phys. Lett. , 2006, 88(12): 121119
doi: 10.1063/1.2187431
26 C. E. Valdivia, E. Desfonds, D. Masson, S. Fafard, A. Carlson, J. Cook, T. J. Hall, and K. Hinzer, Proc. SPIE , 2008, 7099: 709915
doi: 10.1117/12.807675
27 A. Wojs and P. Hawrylak, Phys. Rev. B , 1997, 55(19): 13066
doi: 10.1103/PhysRevB.55.13066
28 A. Wojs and P. Hawrylak, Solid State Commun. , 1996, 100(7): 487
doi: 10.1016/0038-1098(96)00403-6
29 P. Hawrylak and A. Wojs, Semicond. Sci. Technol. , 1996, 11(11S): 1516
doi: 10.1088/0268-1242/11/11S/011
30 P. Hawrylak, Phys. Rev. B , 1999, 60(8): 5597
doi: 10.1103/PhysRevB.60.5597
31 M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, Nature , 2000, 405(6789): 923
doi: 10.1038/35016020
32 P. Hawrylak, Solid State Commun. , 2003, 127(12): 793
doi: 10.1016/S0038-1098(03)00574-X
33 P. Hawrylak, G. A. Narvaez, M. Bayer, and A. Forchel, Phys. Rev. Lett. , 2000, 85(2): 389
doi: 10.1103/PhysRevLett.85.389
34 J. Lefebvre, P. J. Poole, J. Fraser, G. C. Aers, D. Chithrani, and R. L. Williams, J. Cryst. Growth , 2002, 234(2-3): 391
35 M. E. Reimer, M. Korkusinski, D. Dalacu, J. Lefebvre, J. Lapointe, P. J. Poole, G. C. Aers, W. R. McKinnon, P. Hawrylak, and R. L. Williams, Phys. Rev. B , 2008, 78(19): 195301
doi: 10.1103/PhysRevB.78.195301
36 D. Dalacu, K. Mnaymneh, V. Sazonova, P. J. Poole, G. C. Aers, J. Lapointe, and R. CheritonA. J. Spring Thorpe, and R.Williams, Phys. Rev. B , 2010,82(3): 033301
doi: 10.1103/PhysRevB.82.033301
37 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science , 2004, 306(5696): 666
doi: 10.1126/science.1102896
38 T. Ihn, S. Gustavsson, U. Gasser, B. Küng, T. Müller, R. Schleser, M. Sigrist, I. Shorubalko, R. Leturcq, and K. Ensslin, Solid State Commun. , 2009, 149(35-36): 1419
39 A. D. Gü?lüP. Potasz, O. Voznyy, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett. , 2009, 103(24): 246805
40 O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B , 1999, 59(8): 5688
doi: 10.1103/PhysRevB.59.5688
41 C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, J. Appl. Phys. , 1998, 83(5): 2548
doi: 10.1063/1.366631
42 W. Sheng and P. Hawrylak, Phys. Rev. B , 2005, 72(3): 035326
doi: 10.1103/PhysRevB.72.035326
43 G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors, New York: Wiley, 1974
44 A. Zhou and W. Sheng, Eur. Phys. J. B , 2009, 68(2): 233
doi: 10.1140/epjb/e2009-00098-2
45 L. R. C. Fonseca, J. L. Jimenez, and J. P. Leburton, Phys. Rev. B , 1998, 58(15): 9955
doi: 10.1103/PhysRevB.58.9955
46 A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, Phys. Rev. B , 1996, 54(8): 5604
doi: 10.1103/PhysRevB.54.5604
47 Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, J. Cryst. Growth , 1999, 201-202: 1131
48 S. Raymond, S. Studenikin, A. Sachrajda, Z. Wasilewski, S. J. Cheng, W. Sheng, P. Hawrylak, A. Babinski, M. Potemski, G. Ortner, and M. Bayer, Phys. Rev. Lett. , 2004, 92(18): 187402
doi: 10.1103/PhysRevLett.92.187402
49 S. L. Chuang, Physics of Optoelectronic Devices, New York: Wiley, 1995
50 T. B. Bahder, Phys. Rev. B , 1990, 41(17): 11992
doi: 10.1103/PhysRevB.41.11992
51 J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Philadelphia: SIAM, 2002
doi: 10.1137/1.9780898719192
52 W. Sheng and J.-P. Leburton, Phys. Stat. Sol. (b) , 2003, 237: 394
doi: 10.1002/pssb.200301778
53 W. Sheng and J.-P. Leburton, Phys. Rev. B , 2001, 63: 161301(R)
doi: 10.1103/PhysRevB.63.161301
54 W. Sheng and J.-P. Leburton, Appl. Phys. Lett. , 2002, 81(23): 4449
doi: 10.1063/1.1526167
55 J. I. Climente, M. Korkusinski, G. Goldoni, and P. Hawrylak, Phys. Rev. B , 2008, 78(11): 115323
doi: 10.1103/PhysRevB.78.115323
56 C. Y. Hsieh, R. Cheriton, M. Korkusinski, and P. Hawrylak, Phys. Rev. B , 2009, 80(23): 235320
doi: 10.1103/PhysRevB.80.235320
57 M. F. Doty, J. I. Climente, M. Korkusinski, M. Scheibner, A. S. Bracker, P. Hawrylak, and D. Gammon, Phys. Rev. Lett. , 2009, 102(4): 047401
doi: 10.1103/PhysRevLett.102.047401
58 Y. C. Chang, Phys. Rev. B , 1988, 37(14): 8215
doi: 10.1103/PhysRevB.37.8215
59 J. P. Loehr, Phys. Rev. B , 1994, 50(8): 5429
doi: 10.1103/PhysRevB.50.5429
60 S. J. Sun and Y. C. Chang, Phys. Rev. B , 2000, 62(20): 13631
doi: 10.1103/PhysRevB.62.13631
61 M. Zieli′nski, M. Korkusinski, and P. Hawrylak, Phys. Rev. B , 2010, 81(8): 085301
doi: 10.1103/PhysRevB.81.085301
62 E. S. Kadantsev, M. Zielinski, M. Korkusinski, and P. Hawrylak, J. Appl. Phys. , 2010, 107(10): 104315
doi: 10.1063/1.3406144
63 E. S. Kadantsev and P. Hawrylak, Appl. Phys. Lett. , 2011, 98(2): 023108
doi: 10.1063/1.3537815
64 L. He and A. Zunger, Phys. Rev. B , 2006, 73(11): 115324
doi: 10.1103/PhysRevB.73.115324
65 A. J. Williamson, L. W. Wang, and A. Zunger, Phys. Rev. B , 2000, 62(19): 12963
doi: 10.1103/PhysRevB.62.12963
66 A. Canning, L. W. Wang, A. Williamson, and A. Zunger, J. Comput. Phys. , 2000, 160(1): 29
doi: 10.1006/jcph.2000.6440
67 G. Bester and A. Zunger, Phys. Rev. B , 2005, 71(4): 045318
doi: 10.1103/PhysRevB.71.045318
68 D. J. Chadi, Phys. Rev. B , 1977, 16(2): 790
doi: 10.1103/PhysRevB.16.790
69 J. C. Slater and G. F. Koster, Phys. Rev. , 1954, 94(6): 1498
doi: 10.1103/PhysRev.94.1498
70 P. Vogl, H. P. Hjalamarson, and J. D. Dow, J. Phys. Chem. Solids , 1983, 44(5): 365
doi: 10.1016/0022-3697(83)90064-1
71 J. M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Rev. B , 1998, 57(11): 6493
doi: 10.1103/PhysRevB.57.6493
72 G. Klimeck, R. C. Bowen, T. B. Boykin, and T. A. Cwik, Superlattices Microstruct. , 2000, 27(5-6): 519
doi: 10.1006/spmi.2000.0862
73 T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, Phys. Rev. B , 2002, 66(12): 125207
doi: 10.1103/PhysRevB.66.125207
74 J. G. Díaz and G. W. Bryant, Phys. Rev. B , 2006, 73(7): 075329
doi: 10.1103/PhysRevB.73.075329
75 S. Lee, F. Oyafuso, P. von Allmen, and G. Klimeck, Phys. Rev. B , 2004, 69(4): 045316
doi: 10.1103/PhysRevB.69.045316
76 W. Sheng and J. P. Leburton, Appl. Phys. Lett. , 2002, 80(15): 2755
doi: 10.1063/1.1469214
77 Y. Nabetani, T. Ishikawa, S. Noda, and A. Sasaki, J. Appl. Phys. , 1994, 76(1): 347
doi: 10.1063/1.358483
78 W. Sheng, Appl. Phys. Lett. , 2006, 89(17): 173129
doi: 10.1063/1.2370871
79 W. Sheng, Appl. Phys. Lett. , 2008, 92(4): 043113
doi: 10.1063/1.2838755
80 W. Sheng and S. J. Xu, Phys. Rev. B , 2008, 77(11): 113305
doi: 10.1103/PhysRevB.77.113305
81 M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Sch?fer, Phys. Rev. B , 2002, 65(19): 195315
doi: 10.1103/PhysRevB.65.195315
82 O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. , 2000, 84(11): 2513
doi: 10.1103/PhysRevLett.84.2513
83 N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, Phys. Rev. Lett. , 2006, 96(13): 130501
doi: 10.1103/PhysRevLett.96.130501
84 W. Sheng, S. J. Cheng, and P. Hawrylak, Phys. Rev. B , 2005, 71(3): 035316
doi: 10.1103/PhysRevB.71.035316
85 T. Kazimierczuk, M. Goryca, M. Koperski, A. Golnik, J. A. Gaj, M. Nawrocki, P. Wojnar, and P. Kossacki, Phys. Rev. B , 2010, 81(15): 155313
doi: 10.1103/PhysRevB.81.155313
86 T. Takagahara, Phys. Rev. B , 1993, 47(8): 4569
doi: 10.1103/PhysRevB.47.4569
87 T. Takagahara, Phys. Rev. B , 2000, 62(24): 16840
doi: 10.1103/PhysRevB.62.16840
88 S. V. Gupalov and E. L. Ivchenko, Phys. Solid State , 2000, 42(11): 2030
doi: 10.1134/1.1324036
89 E. Kadantsev and P. Hawrylak, Phys. Rev. B , 2010, 81(4): 045311
doi: 10.1103/PhysRevB.81.045311
90 G. Bester, S. Nair, and A. Zunger, Phys. Rev. B , 2003, 67: 161306(R)
doi: 10.1103/PhysRevB.67.161306
91 R. Seguin, A. Schliwa, S. Rodt, K. P?tschke, U. W. Pohl, and D. Bimberg, Phys. Rev. Lett. , 2005, 95(25): 257402
doi: 10.1103/PhysRevLett.95.257402
92 A. J. Shields, Nat. Photon. , 2007, 1(4): 215
doi: 10.1038/nphoton.2007.46
93 K. Kowalik, O. Krebs, A. Golnik, J. Suffczynski, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, Phys. Rev. B , 2007, 75(19): 195340
doi: 10.1103/PhysRevB.75.195340
94 S. J. Cheng, W. Sheng, and P. Hawrylak, Phys. Rev. B , 2003, 68(23): 235330
doi: 10.1103/PhysRevB.68.235330
95 A. Babinski, M. Potemski, S. Raymond, J. Lapointe, and Z. R. Wasilewski, Phys. Rev. B , 2006, 74(15): 155301
doi: 10.1103/PhysRevB.74.155301
96 M. Bayer, A. Kuther, A. Forchel, A. Gorbunov, V. B. Timofeev, F. Sch?fer, J. P. Reithmaier, T. L. Reinecke, and S. N. Walck,Phys. Rev. Lett. , 1999, 82(8): 1748
doi: 10.1103/PhysRevLett.82.1748
97 G. Medeiros-Ribeiroa, M. V. B. Pinheiro, V. L. Pimentel, and E. Marega, Appl. Phys. Lett. , 2002, 80(22): 4229
doi: 10.1063/1.1483112
98 T. P. M. Alegre, F. G. G. Hernández, A. L. C. Pereira, and G. Medeiros-Ribeiro, Phys. Rev. Lett. , 2006, 97(23): 236402
doi: 10.1103/PhysRevLett.97.236402
99 W. Sheng, S. J. Xu, and P. Hawrylak, Phys. Rev. B , 2008, 77: 241307(R)
doi: 10.1103/PhysRevB.77.241307
100 W. Sheng, Appl. Phys. Lett. , 2009, 94(12): 123113
doi: 10.1063/1.3109789
101 W. Sheng and A. Babinski, Phys. Rev. B , 2007, 75(3): 033316
doi: 10.1103/PhysRevB.75.033316
102 W. Sheng and P. Hawrylak, Phys. Rev. B , 2006, 73(12): 125331
doi: 10.1103/PhysRevB.73.125331
103 W. Sheng and J. Wang, Phys. Rev. B , 2010, 82(7): 073308
doi: 10.1103/PhysRevB.82.073308
104 K. Chang and J. B. Xia, Solid State Commun. , 1997, 104(6): 351
doi: 10.1016/S0038-1098(97)00328-1
105 P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, Phys. Rev. Lett. , 2000, 84(4): 733
doi: 10.1103/PhysRevLett.84.733
106 K. Kowalik, O. Krebs, A. Lema?tre, S. Laurent, P. Senellart, P. Voisin, and J. A. Gaj, Appl. Phys. Lett. , 2005, 86(4): 041907
doi: 10.1063/1.1855409
107 M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, Appl. Phys. Lett. , 2007, 91(5): 051904
doi: 10.1063/1.2761522
108 T. Nakaoka, S. Tarucha, and Y. Arakawa, Phys. Rev. B , 2007, 76(4): 041301R
doi: 10.1103/PhysRevB.76.041301
109 M. F. Doty, M. Scheibner, I. V. Ponomarev, E. A. Stinaff, A. S. Bracker, V. L. Korenev, T. L. Reinecke, and D. Gammon, Phys. Rev. Lett. , 2006, 97(19): 197202
doi: 10.1103/PhysRevLett.97.197202
110 W. Sheng, Appl. Phys. Lett. , 2010, 96(13): 133102
doi: 10.1063/1.3367707
111 W. Sheng, Appl. Phys. Lett. , 2009, 95(11): 113105
doi: 10.1063/1.3227653
112 T. Andlauer and P. Vogl, Phys. Rev. B , 2009, 79(4): 045307
doi: 10.1103/PhysRevB.79.045307
113 K. Chang, J. B. Xia, and F. M. Peeters, Appl. Phys. Lett. , 2003, 82(16): 2661
doi: 10.1063/1.1568825
114 M. Korkusinski, M. E. Reimer, R. L. Williams, and P. Hawrylak, Phys. Rev. B , 2009, 79(3): 035309
doi: 10.1103/PhysRevB.79.035309
115 R. L. Williams, G. C. Aers, J. Lefebvre, P. J. Poole, and D. Chithrani, Physica E , 2002, 13(2-4): 1200
doi: 10.1016/S1386-9477(02)00335-1
116 M. E. Reimer, D. Dalacu, J. Lapointe, P. J. Poole, D. Kim, G. C. Aers, W. R. McKinnon, and R. L. Williams, Appl. Phys. Lett. , 2009, 94(1): 011108
doi: 10.1063/1.3063048
117 P. R. Wallace, Phys. Rev. , 1947, 71(9): 622
doi: 10.1103/PhysRev.71.622
118 M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. , 1981, 30(2): 139
doi: 10.1080/00018738100101367
119 J. Blinowski, N. H. Hau, C. Rigaux, J. P. Vieren, R. Le Toullec, G. Furdin, A. Hérold, and J. Melin, J. Physique , 1980, 41(1): 47
doi: 10.1051/jphys:0198000410104700
120 D. M. Hoffman, P. C. Eklund, R. E. Heinz, P. Hawrylak, and K. R. Subbaswamy, Phys. Rev. B , 1985, 31(6): 3973
doi: 10.1103/PhysRevB.31.3973
121 P. Hawrylak, Solid State Commun. , 1987, 63(3): 241
doi: 10.1016/0038-1098(87)90849-0
122 A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. , 2009, 81(1): 109
doi: 10.1103/RevModPhys.81.109
123 L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, Nano Lett. , 2009, 9(7): 2600
doi: 10.1021/nl900811r
124 J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, Nano Lett. , 2005, 5(2): 287
doi: 10.1021/nl048111+
125 L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science , 2008, 320(5874): 356
doi: 10.1126/science.1154663
126 B. Wunsch, T. Stauber, and F. Guinea, Phys. Rev. B , 2008, 77(3): 035316
doi: 10.1103/PhysRevB.77.035316
127 J. Wurm, A. Rycerz, I. Adagideli, M. Wimmer, K. Richter, and H. U. Baranger, Phys. Rev. Lett. , 2009, 102(5): 056806
doi: 10.1103/PhysRevLett.102.056806
128 F. Libisch, C. Stampfer, and J. Burgdorfer, Phys. Rev. B , 2009, 79(11): 115423
doi: 10.1103/PhysRevB.79.115423
129 J. Lu, P. S. Yeo, C. K. Gan, P. Wu, and K. P. Loh, Nat. Nanotechnol. , 2011, 6(4): 247
doi: 10.1038/nnano.2011.30
130 J. Akola, H. P. Heiskanen, and M. Manninen, Phys. Rev. B , 2008, 77(19): 193410
doi: 10.1103/PhysRevB.77.193410
131 M. Ezawa, Phys. Rev. B , 2010, 81(20): 201402
doi: 10.1103/PhysRevB.81.201402
132 P. Potasz, A. D. Gü?lü and P. Hawrylak, Phys. Rev. B , 2010, 81(3): 033403
doi: 10.1103/PhysRevB.81.033403
133 A. D. Gü?lüP. Potasz, and P. Hawrylak, Phys. Rev. B , 2010, 82(15): 155445
134 M. Ezawa, Phys. Rev. B , 2007, 76(24): 245415
doi: 10.1103/PhysRevB.76.245415
135 J. Fern?ndez-Rossier and J. J. Palacios, Phys. Rev. Lett. , 2007, 99(17): 177204
136 W. L. Wang, S. Meng, and E. Kaxiras, Nano Lett. , 2008, 8(1): 241
doi: 10.1021/nl072548a
137 J. Jung and A. H. MacDonald, Phys. Rev. B , 2009, 79(23): 235433
doi: 10.1103/PhysRevB.79.235433
138 T. Yamamoto, T. Noguchi, and K. Watanabe, Phys. Rev. B , 2006, 74: 121409(R)
doi: 10.1103/PhysRevB.74.121409
139 Z. Z. Zhang, K. Chang, and F. M. Peeters, Phys. Rev. B , 2008, 77(23): 235411
doi: 10.1103/PhysRevB.77.235411
140 X. Yan, X. Cui, B. S. Li, and L. S. Li, Nano Lett. , 2010, 10(5): 1869
doi: 10.1021/nl101060h
141 M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Phys. Rev. Lett. , 2006, 97(26): 266405
doi: 10.1103/PhysRevLett.97.266405
142 M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Phys. Rev. Lett. , 2008, 101(26): 267601
doi: 10.1103/PhysRevLett.101.267601
143 C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, and A. Jacobsen, Front. Phys. , 2011, 6(3): 271
144 K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B , 1996, 54(24): 17954
doi: 10.1103/PhysRevB.54.17954
145 K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B , 1999, 59(12): 8271
doi: 10.1103/PhysRevB.59.8271
146 B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Phys. Rev. Lett. , 2008, 101(3): 036803
doi: 10.1103/PhysRevLett.101.036803
147 L. Yang, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. , 2008, 101(18): 186401
doi: 10.1103/PhysRevLett.101.186401
148 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science , 2006, 313(5789): 951
doi: 10.1126/science.1130681
149 E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, Phys. Rev. Lett. , 2007, 99(21): 216802
doi: 10.1103/PhysRevLett.99.216802
150 J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater. , 2008, 7(2): 151
doi: 10.1038/nmat2082
151 K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys. Rev. Lett. , 2009, 102(25): 256405
doi: 10.1103/PhysRevLett.102.256405
152 Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature , 2009, 459(7248): 820
doi: 10.1038/nature08105
153 R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, Science , 2010, 330(6005): 812
doi: 10.1126/science.1194988
154 E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, J. Phys.: Condens. Matter , 2010, 22(17): 175503
doi: 10.1088/0953-8984/22/17/175503
155 L. M. Zhang, Z. Li, D. N. Basov, M. M. Fogler, Z. Hao, and M. C. Martin, Phys. Rev. B , 2008, 78(23): 235408
doi: 10.1103/PhysRevB.78.235408
156 T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, Phys. Rev. Lett. , 2008, 101(9): 096402
doi: 10.1103/PhysRevLett.101.096402
157 O. Voznyy, A. D. Gü?lüP. Potasz, and P. Hawrylak, Phys. Rev. B , 2011, 83(16): 165417
doi: 10.1103/PhysRevB.83.165417
158 K. A. Ritter and J. W. Lyding, Nat. Mater. , 2009, 8(3): 235
doi: 10.1038/nmat2378
159 D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature , 2003, 421(6926): 925
doi: 10.1038/nature01371
160 E. H. Lieb, Phys. Rev. Lett. , 1989, 62(10): 1201
doi: 10.1103/PhysRevLett.62.1201
[1] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[2] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[3] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[4] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
[5] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[6] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[7] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[8] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[9] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[10] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[11] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[12] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[13] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[14] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[15] Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene[J]. Front. Phys. , 2018, 13(2): 137203-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed