Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (4) : 350-356    https://doi.org/10.1007/s11467-011-0212-1
PERSPECTIVE
A reflection on the contrast between the Cooper pairing in iron-based and conventional superconductors
Fa Wang1(), Dung-Hai Lee2,3()
1. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; 2. Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA; 3. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
 Download: PDF(533 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this Perspective article we review retrospectively the streamline of our work on iron-based superconductors, and reflect on the mechanism of Cooper pairing in conventional and unconventional, such as iron-based superconductors. The main theme of this review is the concept of effective interaction and renormalization group.

Keywords Cooper pairing      iron-based superconductors      effective interaction      renormalization group     
Corresponding Author(s): Wang Fa,Email:wangfa@mit.edu; Lee Dung-Hai,Email:dunghai@berkeley.edu   
Issue Date: 05 December 2011
 Cite this article:   
Fa Wang,Dung-Hai Lee. A reflection on the contrast between the Cooper pairing in iron-based and conventional superconductors[J]. Front. Phys. , 2011, 6(4): 350-356.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0212-1
https://academic.hep.com.cn/fop/EN/Y2011/V6/I4/350
1 J. Bardeen, Physics Today , 1963, 16(1): 19
doi: 10.1063/1.3050710
2 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. , 1957, 108: 1175
doi: 10.1103/PhysRev.108.1175
3 L. Landau, Sov. Phys. JETP , 1957, 3: 920
4 This fact has been rephrased in the renormalization group language in R. Shankar, Rev. Mod. Phys. , 1994, 66: 129
5 J. Polchinski, Proceedings of 1992 Theoretical Advanced Studies Institute in Elementary Particle Physics, edited by J. A. Harvey, and J. Polchinski, Singapore: World Scientific, 1993
6 C. M. Varma, P. B. Littlewood, S. Schmittrink, E. Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. , 1989, 63: 1996
doi: 10.1103/PhysRevLett.63.1996
7 P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. , 2006, 78: 17
doi: 10.1103/RevModPhys.78.17
8 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. , 2008, 130: 3296
doi: 10.1021/ja800073m
9 V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. , 1995, 74: 3253
doi: 10.1103/PhysRevLett.74.3253
10 N. Doiron-Leyraud, P. Auban-Senzier, S. Ren′e de Cotret, C. Bourbonnais, D. J′erome, K. Bechgaard, and L. Taillefer, Phys. Rev. B , 2009, 80: 214531
doi: 10.1103/PhysRevB.80.214531
11 S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Kapitulnik, and C. Howald, Rev. Mod. Phys. , 2003, 75: 1201
doi: 10.1103/RevModPhys.75.1201
12 J. Zaanen, Nature , 2000, 404: 714
doi: 10.1038/35008176
13 S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Phys. Rev. B , 2001, 63: 094503
doi: 10.1103/PhysRevB.63.094503
14 C. M. Varma, Phys. Rev. Lett. , 1999, 83: 3538
doi: 10.1103/PhysRevLett.83.3538
15 M. Yi, D. H. Lu, J.-H. Chu, J. G. Analytis, A. P. Sorini, A. F. Kemper, B. Moritz, S.-K. Mo, R. G. Moore, M. Hashimoto, W.-S. Lee, Z. Hussain, T. P. Devereaux, I. R. Fisher, and Z.-X. Shen, PNAS , 2011, 108(17): 6878
doi: 10.1073/pnas.1015572108
16 L. W. Harriger, H. Q. Luo, M. S. Liu, C. Frost, J. P. Hu, M. R. Norman, and P. Dai, Phys. Rev. B , 2011, 84: 054544
doi: 10.1103/PhysRevB.84.054544
17 Y. Matsuda et al., to be published
18 S. Raghu, Xiao-Liang Qi, C. Honerkamp, and Shou-Cheng Zhang, Phys. Rev. Lett. , 2008, 100: 156401
doi: 10.1103/PhysRevLett.100.156401
19 For a review of the electronic structure determined by angleresolved photoemission spectroscopy, see, e.g., X. J. Zhou, G. D. Liu, H. Y. Liu, L. Zhao, W. T. Zhang, X. W. Jia, and J. Q. Meng, Front. Phys. China , 2009, 4: 427
doi: 10.1007/s11467-009-0058-y
20 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. , 2008, 101: 057003
doi: 10.1103/PhysRevLett.101.057003
21 Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nat. Mater. , 2011, 10: 273
doi: 10.1038/nmat2981
22 For theoretical studies of the electronic structure of AFe2Se2, see, e.g., F.-J. Ma, Z. Y. Lu, and T. Xiang, Front. Phys. China , 2010, 5(2): 147
23 D. Zanchi and H. J. Schulz, Phys. Rev. B , 2000, 61: 13609
doi: 10.1103/PhysRevB.61.13609
24 C. Honerkamp, M. Salmhofer, N. Furukawa, and T. M. Rice, Phys. Rev. B , 2001, 63: 035109
doi: 10.1103/PhysRevB.63.035109
25 K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. , 1972, 28: 240
doi: 10.1103/PhysRevLett.28.240
26 F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D.-H. Lee, arXiv:0805.3343 , 2008
27 F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D.-H. Lee, Phys. Rev. Lett. , 2009, 102: 047005
doi: 10.1103/PhysRevLett.102.047005
28 H. Zhai, F. Wang, and D.-H. Lee, Phys. Rev. B , 2009, 80: 064517
doi: 10.1103/PhysRevB.80.064517
29 Jun Zhao, Q. Huang, Clarina de la Cruz, Shiliang Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nat. Mater. , 2008, 7: 953
30 R. Thomale, C. Platt, J. Hu, C. Honerkamp, and B. A. Bernevig, Phys. Rev. B , 2009, 80: 180505(R)
doi: 10.1103/PhysRevB.80.180505
31 R. Thomale, C. Platt, W. Hanke, and B. A. Bernevig, Phys. Rev. Lett. , 2011, 106: 187003
doi: 10.1103/PhysRevLett.106.187003
32 T. A. Maier and D. J. Scalapino, arXiv:1107.0401 , 2011
33 F. Yang, H. Zhai, F. Wang, and D.-H. Lee, Phys. Rev. B , 2011, 83: 134502
doi: 10.1103/PhysRevB.83.134502
34 J. P. Hu and H. Ding, arXiv:1107.1334 , 2011
35 F. Wang, H. Zhai, and D.-H. Lee, Europhys. Lett. , 2009, 85: 37005
doi: 10.1209/0295-5075/85/37005
[1] Igal Talmi. The nuclear shell model: Simplicity from complexity[J]. Front. Phys. , 2018, 13(6): 132103-.
[2] Ning Liang, Fan Zhong. Renormalization group theory for temperature-driven first-order phase transitions in scalar models[J]. Front. Phys. , 2017, 12(6): 126403-.
[3] Fan Zhong. Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model[J]. Front. Phys. , 2017, 12(5): 126402-.
[4] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
[5] Jing-lei Zhang, Lin Jiao, Ye Chen, Hui-qiu Yuan. Universal behavior of the upper critical field in iron-based superconductors[J]. Front. Phys. , 2011, 6(4): 463-473.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed